
OpenSCADA v. 0.8.0
(http://oscada.org)

June 8, 2012

http://oscada.org.ua/

Contents table
Introduction..12

Project targets...12
Policy of development. License...12
Scopes...12
Architecture...13

Functional characteristics and demands of OpenSCADA system..14
 1. The employment area of system OpenSCADA ...14

 1.1. SCADA system's server: ...15
 1.2. Station of the operator of technological process, the board of the dispatcher, the panel
of monitoring, etc.:..16
 1.3. The environment of execution of controllers (PLC): ...17

 2. Requirements for OpenSCADA ...19
 2.1. Execution ..19
 2.2. Building ...21

OpenSCADA program description..23
 1. Functions of the system. ..24

 1.1. Modularity. ...24
 1.2. Subsystems. ...25
 1.3. PLC and other sources of dynamic data. A subsystem "Data acquisition". 25
 1.4. Databases. A subsystem of "Database" ...26
 1.5. Archives. A subsystem "Archives". ...26
 1.6. Communications. Subsystems "Transports" and "Transport protocols". 28
 1.7. Interfaces of the user. A subsystem "Interfaces of the user". ...29
 1.8. Security of system. A subsystem "Security". ..29
 1.9. Management of libraries of modules and modules. A subsystem "Management of
modules"...29
 1.10. Unforeseen opportunities. A subsystem "Special". ..29
 1.11. The user functions. Objective model and the environment of programming of system.
..30

 2. SCADA systems and their structure. ...31
 3. Ways of configuration and using of OpenSCADA system. ..33

 3.1. Simple server connection. ..33
 3.2. The duplicated server connection. ..34
 3.3. The duplicated server connection on one server. ..34
 3.4. Client access by means of the Web-interface. A place of the manager. 35
 3.5. The automated workplace (place of the manager/operator). ...35
 3.6. Automated workplace with a server of acquisition and archiving on the single machine
(a place of the operator, model...)...36
 3.7. The elementary mixed connection (model, demonstration, configurator...). 37
 3.8. The steady, allocated configuration. ...38

 4. Configuration and adjustment of the system. ..40
 4.1. "DB" subsystem ..45
 4.2. Subsystem "Security" ..51
 4.3. Subsystem "Transports" ...54
 4.4. Subsystem "Transport protocols" ...58
 4.5. Subsystem "Data acquisition" ...59
 4.6. Subsystem "Archives" ...70
 4.7. Subsystem "User interfaces" ..81
 4.8. Subsystem "Specials" ...82
 4.9. Subsystem "Modules scheduler" ..83
 4.10. Configuration file of the OpenSCADA and parameters of command-line OpenSCADA
execution...84

 5. System-wide API of user programming. ..95

 2

 5.1. System-wide user objects. ..95
 5.2. System (SYS) ...97
 5.3. Any object (TCntrNode) of OpenSCADA objects tree (SYS.*) 98
 5.4. "Security" subsystem (SYS.Security) ...98
 5.5. "DB" subsystem (SYS.BD) ..98
 5.6. Subsystem "DAQ" (SYS.DAQ) ...99
 5.7. "Archives" subsystem (SYS.Archive) ..100
 5.8. "Transports" subsystem (SYS.Transport) ...101
 5.9. "User interfaces" subsystem (SYS.UI) ...101
 5.10. "Special" subsystem (SYS.Special) ..102

Data acquisition in OpenSCADA...103
 1. Data acquisition methods ...104

 1.1. Simple synchronous acquisition mechanism ..104
 1.2. Simple asynchronous acquisition mechanism ..105
 1.3. Package acquisition mechanism ..106
 1.4. Passive acquisition mechanism ..107

 2. Virtual data sources ...108
 3. Logic level of data processing ..110
 4. Redundancy of the data sources ...114

Quick start OpenSCADA...117
 1. Terms, definitions and abbreviations ...117
 2. Installation ..118

 2.1. Installing OpenSCADA from packages ...118
 2.2. Installation from sources ...120

 3. Initial configuration and start ..121
 3.1.Creation the user's project from scratch ..125

 4. Working with Data Sources ..128
 4.1. Data acquisition from the TP device ...128
 4.2. TP data processing ..138
 4.3. Typified Data Sources Parameters ...145
 4.4. Enabling the TP data archiving ..149

 5. The formation of visual presentation ..152
 5.1. Adding the template page in the project and linkage of the dynamics 153
 5.2. The creation of the new frame, the mnemonic scheme ...158
 5.3. Creation of the new complex element ..166

 6. Recipes ..188
 6.1. Transfer of OpenSCADA configurations from one project to another 188
 6.2. Cyclic programming into OpenSCADA particularity ...189
 6.3. Live disk (Live CD/USB) ...190
 6.4. General provisions of the working conception with violations, alarms and notifications
..195

Conclusion...196
Library of models of technological devices...197

1 Conception...197
2 The library structure...199

Lag (lag) <1.2>..199
Noise (2 harmonic + rand) (noise) <3.5>..199
Ball crane (ballCrane) <1.4>...200
Separator (separator) <14>..200
Valve (klap) <19.5>...201
Lag (clear) (lagClean) <2.9>...202
Boiler: barrel (boilerBarrel) <30.5>...202
Boiler: burner (boilerBurner) <50.5>...203
Network (loading) (net) <13>..204
Source (pressure) (src_press) <12>...205

 3

Air cooler (cooler) <16.5>...205
Gas compressor (compressor) <12>..206
Source (flow) (src_flow) <2.2>..207
Pipe-base (pipeBase) <11.5>...207
Pipe 1->1 (pipe1_1) <36.5>..208
Pipe 2->1 (pipe2_1) <26>...208
Pipe 3->1 (pipe3_1) <36>...209
Pipe 1->2 (pipe1_2) <25.5>..210
Pipe 1->3 (pipe1_3) <36.5>..210
Pipe 1->4 (pipe1_4) <47.5>..211
Valve proc. mechanism (klapMech) <3>..212
Diaphragm (diafragma) <14>..213
Heat exchanger (heatExch) <28.4>..213

Main elements library of the user interface...215
 1. Analog show (anShow) ..216

Using - Development..216
Using - Runtime..216
Linking attributes...216

 2. Analog show 1 (anShow1) ...217
Using - Development..217
Linking attributes...217

 3. Element cadr (ElCadr) ..218
Using - Development..218
Using - Runtime..219
Linking attributes...220

 4. Contours group (grpCadr) ..222
Using - Development..222
Using - Runtime..222
Linking attributes...223

 5. Views page's element (ElViewCadr) ..224
Using - Development..224
Using - Runtime..224
Linking attributes...224

 6. Overview frames panel (ViewCadr) ...225
Using - Development..225
Using - Runtime..226
Linking attributes...226

 7. Graphics group element (ElViewGraph) ..227
Using - Development..227
Using - Runtime..227
Linking attributes...227

 8. Graphics group (grpGraph) ..229
Using - Development..229
Using - Runtime..230
Linking attributes...230

 9. Result graphic's element (ResultGraphEl) ...231
Using - Development..231
Linking attributes...231

 10. Result graphics (ResultGraph) ...232
Using - Development..232
Using - Runtime..233
Linking attributes...233

 11. Regulator's control panel (cntrRegul) ..234
Using - Development..234
Using - Runtime..234

 4

Linking attributes...235
 12. Root page (SO) (RootPgSo) ..237

Using - Development..238
Using - Runtime..239

 13. Passport (cntrPasp) ...240
Using - Development..240
Using - Runtime..240
Linking attributes...240

 14. Document panel (doc_panel) ...241
Using - Development..241
Using - Runtime..241
Linking attributes...242

 15. Graphics group panel (grph_panel) ...243
Using - Development..243
Using - Runtime..243
Linking attributes...244

 16. Terminator panel (terminator) ..245
Using - Development..245
Using - Runtime..245

 17. Prescription: editing (prescrEdit) ..246
Using - Development..247
Using - Runtime..248
Linking attributes...248

 18. Prescription: runtime (prescrRun) ..249
Using - development...250
Using - Runtime..250
Linking parameters...251

 19. Acception (accept) ...252
Using - development...252
Using - Runtime..252
Linking parameters...252

 20. Graph's param select (graphSelPrm) ..253
Using - development...254
Using - Runtime..254

Mnemonic elements library of the user interface..255
 1. Elements of the pipeline without a gradient fill ...255
 2. Elements of the pipeline with a volume filling ..256
 3. Elements, representing various technological devices ..257
 4. The remaining elements, which can hardly be referred to a particular group 258

Library of the electrical elements of the user's interface mnemonic schemes..............................259
 1. Dynamic items ..259
 2. Static elements ...261

Module of subsystem “Archives”<FSArch>...262
 1. Message Archiver ..262

 1.1. File format of archive messages ...264
 1.2. Example of the archive of messages file ..265

 2. Values Archiver ..266
 2.1. File format of archive values ...268

 3. Efficiency ..270
Module of subsystem “Archives” <DBArch>...271

 1. Message Archiver ..271
 2. Values Archiver ..272
 3. Informational table of the archival tables ...273

Module of the subsystem “DB” <DBF>...274
 1. Operations over the database ..274

 5

 2. Operations over the table ...274
 3. Operations over the contents of the table ..274
 4. Productivity of DB ...275

Module of the subsystem “DB” <MySQL>...276
 1. Operations over the database ..276
 2. Operations over the table ...276
 3. Operations over the contents of the table ..276
 4. DB access ..277
 5. Productivity of DB ...278

Module of the subsystem “DB” <SQLite>..279
 1. Operations over the database ..279
 2. Operations over the table ...279
 3. Operations over the contents of the table ..279
 4. Access rights ..280
 5. Productivity of DB ...280

Module of the subsystem “DB” <FireBird>..281
 1. Operations over the database ..281
 2. Operations over the table ...281
 3. Operations over the contents of the table ..281
 4. DB access ..282
 5. Productivity of DB ...282

Module of the subsystem “DB” <PostgreSQL>...283
 1. Operations over the database ..283
 2. Operations over the table ...283
 3. Operations over the contents of the table ..284
 4. Access rights ..284
 5. Productivity of DB ...285

The module of subsystem “Data acquisition” <DiamondBoards>...286
 1. Data controller of Diamond boards ..286
 2. Parameters of the Diamond controller ...289
Links..290

The module of subsystem “Data acquisition” <System>...291
 1. The controller of data ...292
 2. Parameters ...293

The module of subsystem “Data acquisition” <BlockCalc>...295
 1. The controller of the module ..297
 2.The block scheme of the controller ...298
 3. Parameters of the controller ...301
 4. Copying of the block schemes ...302

The module of subsystem “Data acquisition” <JavaLikeCalc>...303
 1. Java-like language ...306

 1.1. Elements of language ...306
 1.2. Operations of language ..306
 1.3. Embedded functions of language ...307
 1.4. Operators of the language ..308
 1.5. Object ..309
 1.6. Examples of programs on the language ...311

 2. Controller and its configuration ..312
 3. The parameter of the controller and its configuration ..313
 4. Libraries of functions of module ...314
 5. User functions of the module ...314
 6. User programming API ...314

The module of subsystem “Data acquisition” <LogicLev>..315
 1. Data controller ..316
 2. Parameters ...316

 6

Logical type parameter (std)...318
Parameter reflection (pRef)..320

The module of subsystem “Data acquisition” <SNMP>..321
 1. SNMP ...322

 1.1. MIB ..322
 1.2. Addressing ..322
 1.3. Interaction ...323
 1.4. Authorization ...323

 2. Module ..324
 2.1. Controller of data ..324
 2.2. Parameters ...325

TThe module of subsystem “Data acquisition” <Siemens>..327
 1. Communication controllers CIF ..328
 2. The controller of the data source ...330
 3. The parameters of the data source ..332
 4. Asynchronous recording mode ..336
 5. Comments ..336
Links..336

The modules <ModBus> of subsystem “Data acquisition” and subsystem “Transport protocols”
...337

 1. General description of the ModBus protocol ..338
 1.1. Addressing ..338
 1.2. Standard codes of functions ...338

 2. Module of the implementation of the protocol ..339
 2.1. API functions of outgoing requests ...339
 2.2. Servicing of the requests for ModBus protocol ...340
 2.3 Report of the ModBus requests ...348

 3. Data acquisition module ...349
 3.1. Controller of data ..349
 3.2. Parameters ...351
 3.3. User programming API ...355

The module of subsystem “Data acquisition”<DCON>...356
 1. General description of the protocol DCON ..356
 2. Module ..357

 2.1. Data controller ...357
 2.2. Parameters ...358

 3. Compatibility table of input/output modules of different manufacturers 360
The module of subsystem “Data acquisition” <ICP_DAS>...362

 1. Data controller ..363
 2. Parameters ...364

 2.1 Module I-8017 ..365
 2.2 Module I-8042 ..366
 2.3 Module I-87019 ..366
 2.4 Module I-87024 ..366
 2.5 Module I-87057 ..366

 3. LP-8x81 series controllers configuration ..366
Links..366

The module of subsystem “Data acquisition” <DAQGate>...367
 1. Controller of data ..369
 2. Parameters ...370

The module of subsystem “Data acquisition”<SoundCard>...371
 1. Controller of the data ..372
 2. Parameters ...373

The <OPC_UA> module of “Data acquisition” and “Transport protocols” subsystems................375
 1. OPC UA protocol ..376

 7

 2. The module of the protocol implementation ...377
 2.1. Service the requests on the OPC UA protocol ...377

 3. Data acquisition module ...379
 3.1. Data controller ...379
 3.2. Parameters ...381

 4. Notes ..382
The <BFN> module of “Data acquisition” subsystem...383

 1. Data controller ..385
 2. Parameters ...386

Module <Sockets> of subsystem “Transports”..387
 1. Incoming transports ..388
 2. Outgoing transports ..390

Module <SSL> of subsystem “Transports”..392
 1. Incoming transports ..393
 2. Outgoing transports ..395
 3. Certificates and keys ..396

Module <Serial> of subsystem “Transports”...397
 1. Incoming transports ..398
 2. Outgoing transports ..400
 3. Remarks ...402

Module <HTTP> of subsystem “Protocols”...403
 1. Authentication ...404
 2. The modules of user WEB-interface ..405
 3. Outgoing requests function's API ...406

Module <SelfSystem> of subsystem “Protocols”..408
 1. The syntax of the protocol ..408
 2.The internal structure of an outgoing protocol ..409

Module <UserProtocol> of subsystem “Protocols”..410
 1. Part of the protocol for incoming requests ...411
 2. Part of the protocol for outgoing requests ..413

The module <FLibComplex1> of the subsystem “Specials”...415
 1. Alarm (alarm) <111> ..415
 2. Condition '<' (cond_lt) <239> ...415
 3. Condition '>' (cond_gt) <240> ..415
 4. Full condition (cond_full) <513> ...416
 5. Digital block (digitBlock) <252> ..416
 6. Division (div) <526> ...416
 7. Exponent (exp) <476> ..416
 8. Flow (flow) <235> ...416
 9. Iterator (increment) <181> ...416
 10. Lag (lag) <121> ..417
 11. Simple multiplication(mult) <259> ..417
 12. Multiplication + Division(multDiv) <468> ..417
 13. PID regulator (pid) <745> ...417
 14. Power (pow) <564> ..418
 15. Selection (select) <156> ..418
 16. Simple integrator (sum) <404> ..418
 17. Sum with the division (sum_div) <518> ...418
 18. Sum with the multiplication. (sum_mult) <483> ...419
 19. User programming API ...419

The module <FLibMath> of the subsystem “Specials” <FLibMath>...420
 1. Functions ..420
 2. User programming API ...421

The module <FLibSYS> of the subsystem “Specials”..422
 1. System-wide functions ...422

 8

 1.1. Calling the console commands and operating system utilities (sysCall) 422
 1.2. SQL query (dbReqSQL) ...423
 1.3. XML node (xmlNode) ..423
 1.4. Request of the management interface (xmlCntrReq) ...423
 1.5. Values archive (vArh) ...424
 1.6. Buffer of the values archive (vArhBuf) ..424

 2. Functions for the astronomical time processing ..425
 2.1. Time string (tmFStr) <3047> ...425
 2.2. Full Date (tmDate) <973> ...425
 2.3. Absolute time (tmTime) <220> ...425
 2.4. Conversion the time from the symbolic representation to the time in seconds from the
epoch of 1/1/1970 (tmStrPTime) <2600>...426
 2.5. Planning of the time in the Cron format (tmCron) ...426

 3. Functions of the messages processing ..426
 3.1. Messages request (messGet) ...426
 3.2. Generation of the message (messPut) ...427

 4. Functions of the strings processing ...427
 4.1. Getting the size of the string (strSize) <114> ...427
 4.2. Getting the part of the string (strSubstr) <413> ..427
 4.3. Insert of the on string to the another (strInsert) <1200> ...427
 4.4. Change the part of the string with the another one (strReplace) <531> 428
 4.5. Parsing the string on separator (strParse) <537> ..428
 4.6. Path parsing (strParsePath) <300> ..428
 4.7. Path to the string with the separator (strPath2Sep) ...428
 4.8. Coding of the string to HTML (strEnc2HTML) ..429
 4.9. Encode text to bin (strEnc2Bin) ..429
 4.10. Decode text from bin (strDec4Bin) ...429
 4.11. Convert real to string (real2str) ...429
 4.12. Convert integer to string (int2str) ..429
 4.13. Convert the string to real (str2real) ...430
 4.14. Convert the to integer (str2int) ..430

 5. Functions for the real processing ...430
 5.1. Splitting the float to the words (floatSplitWord) <56> ...430
 5.2. Merging the float from words (floatMergeWord) <70> ..430

 6. User programming API ...430
The module <SystemTests> of the subsystem "Specials"..431

 1. Parameter (Param) ...432
 2. XML parsing (XML) ...432
 3. Messages (Mess) ..432
 4. SO attaching (SOAttach) ...433
 5. Attribute of the parameter (Val) ...433
 6. DB test (DB) ..433
 7. Transport (TrOut) ..434
 8. Control system language (SysContrLang) ..434
 9. Values buffer (ValBuf) ...434
 10. Values archive (Archive) ...434
 11. Base64 code (Base64Code) ...434

The module of subsystems “User Interfaces” <QTStarter>..435
The module <QTCfg> of subsystems “User Interfaces”...437

 1. Configuration ..440
 2. Basic elements ...441
 3. Commands ...442
 4. Lists ..443
 5. Tables ...444
 6. Images ..445

 9

The module <WebCfg> of subsystems “User Interfaces”...446
 1. Basic elements ...448
 2. Commands ...448
 3. Lists ..449
 4. Tables ...449
 5. Images ..450

The module <WebCfgD> of subsystems “User Interfaces”..451
 1. Configuration ..453
 2. Basic elements ...454
 3. Commands ...455
 4. Lists ..456
 5. Tables ...457
 6. Images ..458
 7. Errors ..459

The module <VCAEngine> of subsystems "User Interfaces"...461
 1. Purpose ..461
 2. The configuration and the formation of interfaces of the VCA ...463
 3. Architecture ..464

 3.1. Frames and elements of visualization (widgets) ..465
 3.2. Project ...468
 3.3. Styles ..471
 3.4. Events, their processing and the events' maps ..473
 3.5. Signaling (Alarms) ...476
 3.6. Rights management ..477
 3.7. Linkage with the dynamics ..477
 3.8. The primitives of the widget ..483
 3.9. Using the database to store the library of widgets and projects 506
 3.10 API of the user programming and service interfaces of the OpenSCADA 508
 4. Configuring the module via the control interface of OpenSCADA 513

The module <Vision> of subsystems "User Interfaces"..523
 1. Purpose ..523
 2. Tool of the graphical formation of the VCA interface ...525

 2.1. Styles ..534
 2.2. Linkage with the dynamics ..535

 3. Execution of the VCA interfaces ..537
 4. Сonception of basic elements (primitives) ...539

 4.1. Elementary figure primitive (ElFigure) ..540
 4.2. Text primitive (Text) ..541
 4.3. Primitive of the form element (FormEl) ...542
 4.4. Primitive of the displaying the media materials (Media) ...543
 4.5. Primitive of the construction of diagrams/graphs (Diagram) ..544
 4.6. Primitive of the protocol formation (Protocol) ...544
 4.7. Primitive of the report formation (Document) ..545
 4.8. Primitive of the box container (Box) ..546

 5. Vector graphics editor. ...547
 5.1. Purpose ...547
 5.2. Principles and functions of the graphic editor ...547
 5.3. Basic principles of operation in the graphic editor ..549
 5.4. Popup menu of the graphic editor ..552
 5.5. Properties dialog of the elementary figure ..553

 6. The overall configuration of the module ...555
The module <WebVision> of subsystems “User Interfaces”...557

 1. Purpose ..557
 2. Execution of the VCA interfaces ..559
 3. Conception of basic elements (primitives) ...561

 10

 3.1. Elementary figure primitive (ElFigure) ..562
 3.2. Text primitive (Text) ..563
 3.3. Primitive of the form element (FormEl) ...564
 3.4. Primitive of the displaying the media materials (Media) ...565
 3.5. Primitive of the construction of diagrams/graphs (Diagram) ..566
 3.6. Primitive of the protocol formation (Protocol) ...566
 3.7. Primitive of the report formation(Document) ...567
 3.8. Primitive of the box container (Box) ..568

 4. The overall configuration of the module ...569
Conclusion...569

The module <WebUser> of subsystems "User Interfaces"...570
 1. WEB — pages ..572

 11

Introduction
OpenSCADA represents opened SCADA system constructed on principles of modules, multiplatform

and scalability. (Supervisory Control And Data Acquisition) is the term which it is often used in sphere of
automation of technological processes. The system OpenSCADA is intended for: acquisition, archiving,
visualization of the information, delivery of operating influences, and also for other related operations,
which are characteristic for full-function SCADA systems.

Project targets
The basic purposes which are pursued with the project, are:

• openness;
• reliability;
• flexibility;
• scalability;
• security;
• financial availability;
• giving of the convenient interface of management

Policy of development. License.
As policy of software realization of the given project principles of development are chosen. This policy

will allow to involve in development, testing, distribution and using of the product the significant amount of
developers, enthusiasts and other interested persons with the minimal financial expenses at the same time.
The program is accessible on conditions of the GPL v2 license.

Scopes
The system OpenSCADA is intended for performance as SCADA systems of usual functions, and for

use in adjacent areas of information technologies.

The system OpenSCADA can be used:
• on industrial targets as full-function SCADA system;
• in built in systems, as the execution environment (including PLC);
• for construction of various models (technological, chemical, physical, electric processes);
• on personal computers, servers and clusters for acquisition, processing, representation and
archiving of the information about system and its environment.

As base (host) operational systems (OS) for the development and uses it is chosen the OS Linux which is
POSIX compatible OS. Besides OS Linux is the optimum solution in questions:

• safety;
• flexibility/scalability;
• availability;
• popularity and prevalence.

As the system OpenSCADA is developed on standard of POSIX OS, by principles of mutiplatform its
adaptation on other OS will not make a problem.

Introduction 12

Architecture
Heart of system is the modular kernel.

Depending on what modules are connected, the system can carry out both functions of various servers,
and functions of clients of client-server architecture. Actually, the architecture of system allows to realize
the distributed client-server systems of any complexity.

For achievement of high speed due to reduction of communications time, the architecture allows to unite
functions of the distributed systems in one program.

Architecturally, the system OpenSCADA consists of subsystems:
• The security subsystem. Contains lists of users and groups of users, provides check of the rights
of access to system elements, etc.
• The modules DB subsystem. Provides access to databases.
• The modules transport subsystem. Provides the communications with an environment by means
of various communication interfaces.
• The modules transport's protocol subsystem. It is closely connected with a subsystem of
transports and provides support of various reports of an exchange with external systems.
• The modules DAQ subsystem. Provides data acquisition from external sources: controllers,
sensors, gauges, etc. Except for it the subsystem can give environment for a writing of generators of
data (model, regulators...).
• The modules archive subsystem. Contains archives of two types: archives of messages and
archives of values. An archivation way is defined by algorithm which is incorporated in the
archivator's module.
• The modules user interfaces subsystem. Contains functions of the user interfaces.
• The control modules subsystem. Provides the control over modules.
• The modules special subsystem. Contains functions not entered in other subsystems.

Proceeding from a modules principle, the modular subsystems, which are specified above, can expand
the functionality by connection of corresponding type of the modules.

The modular kernel of system OpenSCADA is designed in the form of static and shared libraries. It
allows to build in functions of system existing programs, and also to create new programs on the basis of a
modular kernel of OpenSCADA system.

However, the modular kernel is self-sufficient and can be used by means of the simple starting program.

Modules of system OpenSCADA are stored in dynamic libraries. Each dynamic library can contain set
of modules of various type. Filling of dynamic libraries by modules is defined by functional connectivity of
modules. Dynamic libraries suppose hot replacement that allows to make updating of modules during work.
The method of storage of a code of modules in dynamic libraries is the core for system OpenSCADA as it
is supported practically by all modern OS. It does not exclude an opportunity of development of other
storage modules code methods.

Introduction 13

Functional characteristics and demands of
OpenSCADA system

 1. The employment area of system OpenSCADA

Fig. 1. OpenSCADA system's roles

Functional characteristics and demands of OpenSCADA system 14

 1.1. SCADA system's server:

• The visual control and management by means of the interfaces:
• Remote visualization server grounded on visualization and control area (VCA) engine
VCAEngine. The module UI.Vision local starting and connecting to the visualization server.
• Remote WEB interface. By means of a Web-browser, the visualization module
WebVision and the module of a kernel of visual control area VCAEngine.
• Simple remote Web-interfaces of user. By mean Web-browser and UI-module WebUser.

• Data acquisition (DAQ) from sources:
• Information about a platform (hardware-software) on which the server works. By means
of the DAQ-module System.
• Data acquisition from sources which support protocol SNMP (Simple Network
Management Protoсol). By means of the DAQ-module SNMP.
• Data acquisition from controllers of firm Siemens of S7 series. By means of the DAQ-
module Siemens.
• Data acquisition of industrial controllers under the protocol ModBus. By means of the
DAQ-module ModBus.
• Data acquisition of industrial controllers under the protocol DCON. By means of the
DAQ-module DCON.
• Formation of derivative structures of parameters on the basis of templates of parameters
and data from other sources. By means of the DAQ-module LogicLev.
• Data acquisition from other servers and PLC, based on OpenSCADA, possibly for
duplication. By means of the DAQ-module DAQGate.
• Data acquisition from sound controller's input channels. By means of the DAQ-module
SoundCard.
• Data acquisition from hardware of firm ICP DAS. By means of the DAQ-module
ICP_DAS.
• Data acquisition from sources which support protocol OPC_UA. By means of the DAQ-
module OPC UA.
• Data acquisition from automation of "Big Dutchman" company. By means of the DAQ-
module BFN.
• Data acquisition from different sources, which have utilities for access to it data or it
accessibly through simple special network protocols. Made by getting procedure writing on
language of user programming by DAQ-module JavaLikeCalc, and also transport-protocol-
module User Protocol.

• Providing data to upper-level systems:
• By means of interfaces:

• Serial interface (RS232, RS485, Modem, ...), by helps of transport module Serial.
• IP-networks sockets and network levels protocols TCP, UDP and Unix, by helps
of transport module Sockets.
• Security sockets layer (SSL), by helps of transport module SSL.

• By means of protocols:
• Self OpenSCADA protocol, by helps of transport's protocol module SelfSystem.
• ModBUS family protocol (TCP, RTU and ASCII), by helps of transport's protocol
module ModBUS.
• "OPC UA" protocol, by helps of transport's protocol module OPC UA.
• Simple special protocols, developed by users by helps of transport's protocol
module User Protocol.

• Implementation of user calculations in languages:
• Language of block schemes. By means of the DAQ-module BlockCalc.
• With the help of Java-like language of a high level. By means of the DAQ-module
JavaLikeCalc.

• Archiving messages, conducting reports on various categories and levels by means of
mechanisms:

Functional characteristics and demands of OpenSCADA system 15

http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc?v=goq
http://wiki.oscada.org/HomePageEn/Doc/BlockCalc?v=jvr
http://wiki.oscada.org/HomePageEn/Doc/UserProtocol?v=fmy
http://wiki.oscada.org/HomePageEn/Doc/OPCUA?v=2q6
http://wiki.oscada.org/HomePageEn/Doc/ModBus?v=ty5
http://wiki.oscada.org/HomePageEn/Doc/SelfSystem?v=tp1
http://wiki.oscada.org/HomePageEn/Doc/SSL?v=c6s
http://wiki.oscada.org/HomePageEn/Doc/Soskets?v=11ne
http://wiki.oscada.org/HomePageEn/Doc/Serial?v=yv
http://wiki.oscada.org/HomePageEn/Doc/UserProtocol?v=fmy
http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc?v=goq
http://wiki.oscada.org/HomePageEn/Doc/BFN?v=tzt
http://wiki.oscada.org/HomePageEn/Doc/OPCUA?v=2q6
http://wiki.oscada.org/HomePageEn/Doc/ICPDAS?v=m20
http://www.icpdas.com/
http://wiki.oscada.org/HomePageEn/Doc/SoundCard?v=gn8
http://wiki.oscada.org/HomePageEn/Doc/DAQGate?v=b3b
http://wiki.oscada.org/HomePageEn/Doc/LogicLev?v=gqo
http://wiki.oscada.org/HomePageEn/Doc/DCON?v=18w8
http://wiki.oscada.org/HomePageEn/Doc/ModBus?v=ty5
http://wiki.oscada.org/HomePageEn/Doc/Siemens?v=6d9
http://wiki.oscada.org/HomePageEn/Doc/SNMP?v=22q
http://wiki.oscada.org/HomePageEn/Doc/System?v=10jr
http://wiki.oscada.org/HomePageEn/Doc/WebUser?v=1d4g
http://wiki.oscada.org/HomePageEn/Doc/VCAEngine?v=txf
http://wiki.oscada.org/HomePageEn/Doc/WebVision?v=h86
http://wiki.oscada.org/HomePageEn/Doc/VCAEngine?v=txf

• Files in a XML-format or the flat text with packing the out-of-date archives. By means of
the archiving module FSArch.
• In tables of archival DB. By means of the archiving module DBArch.
• In plans. On other server, it is possible to the allocated archiving server, based on
OpenSCADA.

• Archiving values of the collected data by means of mechanisms:
• Files with double packing: consecutive and standard archiver gzip. By means of the
archiving module FSArch.
• In tables of archival DB. By means of the archiving module DBArch.

• Configuration and management of a server through:
• The WEB-interface. By means of a Web-browser and the UI-module WebCfgD and
WebCfg.
• From the remote configuration station. By means of the UI-module at configuration
station QTCfg and the interface of management OpenSCADA reflected in the protocol
SelfSystem.

• Data storage of a server in a DB of types:
• MySQL. By means of the DB-module MySQL.
• SQLite. By means of the DB-module SQLite.
• PostgreSQL. By means of the DB-module PostgreSQL.
• DBF. By means of the DB-module DBF.
• FireBird. By means of the DB-module FireBird.
• In plans. DB accessible on other server based on OpenSCADA.
• In plans. LDAP.

 1.2. Station of the operator of technological process, the board of the dispatcher, the
panel of monitoring, etc.:

• The visual control and management by means of the interfaces:
• The local (fast) interface based on QT library. By means of the visualization module
Vision and the module of a kernel of the visual control area VCAEngine include ability of
visualization from remote engine of VCA, visualization server.
• Remote WEB interface. By means of a Web-browser, the visualization module
WebVision and the module of a kernel of visual control area VCAEngine.
• Simple remote Web-interfaces of user. By mean Web-browser and UI-module WebUser.

• Data acquisition (DAQ) from sources:
• Data acquisition from other servers and PLC, based on OpenSCADA, for data
transportation and for duplication. By means of the DAQ-module DAQGate.
• Data acquisition from sources which support protocol SNMP (Simple Network
Management Protoсol). By means of the DAQ-module SNMP.
• Data acquisition from sources which support protocol OPC_UA. By means of the DAQ-
module OPC UA.

• Implementation of the user calculations in languages:
• Language of block schemes. By means of the DAQ-module BlockCalc.
• With the help of Java-like language of a high level. By means of the DAQ-module
JavaLikeCalc.

• Archiving messages, conducting reports on various categories and levels by means of
mechanisms:

• Files in a XML-format or the flat text with packing the out-of-date archives. By means of
the archiving module FSArch.
• In tables of archival DB. By means of the archiving module DBArch.
• In plans. On other server, it is possible to the allocated archiving server, based on
OpenSCADA.

• Configuration and management of station through:
• The WEB-interface. By means of a Web-browser and the UI-module WebCfgD or
WebCfg.
• The QT-interface. By means of the UI-module QTCfg.

Functional characteristics and demands of OpenSCADA system 16

http://wiki.oscada.org/HomePageEn/Doc/QTCfg?v=onm
http://wiki.oscada.org/HomePageEn/Doc/WebCfg?v=145q
http://wiki.oscada.org/HomePageEn/Doc/WebCfgD?v=kke
http://wiki.oscada.org/HomePageEn/Doc/DBArch?v=kot
http://wiki.oscada.org/HomePageEn/Doc/FSArch?v=6q4
http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc?v=goq
http://wiki.oscada.org/HomePageEn/Doc/BlockCalc?v=jvr
http://wiki.oscada.org/HomePageEn/Doc/OPCUA?v=2q6
http://wiki.oscada.org/HomePageEn/Doc/SNMP?v=22q
http://wiki.oscada.org/HomePageEn/Doc/DAQGate?v=b3b
http://wiki.oscada.org/HomePageEn/Doc/WebUser?v=1d4g
http://wiki.oscada.org/HomePageEn/Doc/VCAEngine?v=txf
http://wiki.oscada.org/HomePageEn/Doc/WebVision?v=h86
http://wiki.oscada.org/HomePageEn/Doc/VCAEngine?v=txf
http://wiki.oscada.org/HomePageEn/Doc/Vision?v=w7q
http://wiki.oscada.org/HomePageEn/Doc/FireBird?v=gq1
http://wiki.oscada.org/HomePageEn/Doc/DBF?v=gw9
http://wiki.oscada.org/HomePageEn/Doc/PostgreSQL?v=aiw
http://wiki.oscada.org/HomePageEn/Doc/SQLite?v=gzh
http://wiki.oscada.org/HomePageEn/Doc/MySQL?v=kjf
http://wiki.oscada.org/HomePageEn/Doc/SelfSystem?v=tp1
http://wiki.oscada.org/HomePageEn/Doc/QTCfg?v=onm
http://wiki.oscada.org/HomePageEn/Doc/WebCfg?v=145q
http://wiki.oscada.org/HomePageEn/Doc/WebCfgD?v=kke
http://wiki.oscada.org/HomePageEn/Doc/DBArch?v=kot
http://wiki.oscada.org/HomePageEn/Doc/FSArch?v=6q4
http://wiki.oscada.org/HomePageEn/Doc/DBArch?v=kot
http://wiki.oscada.org/HomePageEn/Doc/FSArch?v=6q4

• From the remote configuration station. By means of the UI-module at configuration
station QTCfg and the interface of management OpenSCADA reflected in the protocol
SelfSystem.

• Data storage of station in a DB of types:
• MySQL. By means of the DB-module MySQL.
• SQLite. By means of the DB-module SQLite.
• PostgreSQL. By means of the DB-module PostgreSQL.
• DBF. By means of the DB-module DBF.
• FireBird. By means of the DB-module FireBird.
• In plans. DB accessible on other server based on OpenSCADA.
• In plans. LDAP.

 1.3. The environment of execution of controllers (PLC):

• Data acquisition (DAQ) from sources:
• Cards of data acquisition of firm Diamond Systems. By means of the DAQ-module
DiamondBoards.
• Information on a platform (hardware-software) on which the server works. By means of
the DAQ-module System.
• Data acquisition from sources which support protocol SNMP (Simple Network
Management Protoсol). By means of the DAQ-module SNMP.
• Data acquisition of industrial controllers under the protocol ModBus. By means of the
DAQ-module ModBus.
• Data acquisition of industrial controllers under the protocol DCON. By means of the
DAQ-module DCON.
• Formation of derivative structures of parameters on the basis of templates of parameters
and data from other sources. By means of the DAQ-module LogicLev.
• Data acquisition from other servers and PLC, based on OpenSCADA, possibly for
duplication. By means of the DAQ-module DAQGate.
• Data acquisition from sound controller's input channels. By means of the DAQ-module
SoundCard.
• Data acquisition from hardware of firm ICP DAS. By means of the DAQ-module
ICP_DAS.
• Data acquisition from sources which support protocol OPC_UA. By means of the DAQ-
module OPC UA.
• Data acquisition from different sources, which have utilities for access to it data or it
accessibly through simple special network protocols. Made by getting procedure writing on
language of user programming by DAQ-module JavaLikeCalc, and also transport-protocol-
module User Protocol.

• Providing data to upper-level systems:
• By means of interfaces:

• Serial interface (RS232, RS485, Modem, ...), by helps of transport module Serial.
• IP-networks sockets and network levels protocols TCP, UDP and Unix, by helps
of transport module Sockets.
• Security sockets layer (SSL), by helps of transport module SSL.

• By means of protocols:
• Self OpenSCADA protocol, by helps of transport's protocol module SelfSystem.
• ModBUS family protocol (TCP, RTU and ASCII), by helps of transport's protocol
module ModBUS.
• "OPC UA" protocol, by helps of transport's protocol module OPC UA.
• Simple special protocols, developed by users by helps of transport's protocol
module User Protocol.

• Management, regulation and performance of other user calculations in languages:
• Language of block schemes. By means of the DAQ-module BlockCalc.
• With the help of Java-like language of a high level. By means of the DAQ-module
JavaLikeCalc.

Functional characteristics and demands of OpenSCADA system 17

http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc?v=goq
http://wiki.oscada.org/HomePageEn/Doc/BlockCalc?v=jvr
http://wiki.oscada.org/HomePageEn/Doc/UserProtocol?v=fmy
http://wiki.oscada.org/HomePageEn/Doc/OPCUA?v=2q6
http://wiki.oscada.org/HomePageEn/Doc/ModBus?v=ty5
http://wiki.oscada.org/HomePageEn/Doc/SelfSystem?v=tp1
http://wiki.oscada.org/HomePageEn/Doc/SSL?v=c6s
http://wiki.oscada.org/HomePageEn/Doc/Soskets?v=11ne
http://wiki.oscada.org/HomePageEn/Doc/Serial?v=yv
http://wiki.oscada.org/HomePageEn/Doc/UserProtocol?v=fmy
http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc?v=goq
http://wiki.oscada.org/HomePageEn/Doc/OPCUA?v=2q6
http://wiki.oscada.org/HomePageEn/Doc/ICPDAS?v=m20
http://www.icpdas.com/
http://wiki.oscada.org/HomePageEn/Doc/SoundCard?v=gn8
http://wiki.oscada.org/HomePageEn/Doc/DAQGate?v=b3b
http://wiki.oscada.org/HomePageEn/Doc/LogicLev?v=gqo
http://wiki.oscada.org/HomePageEn/Doc/DCON?v=18w8
http://wiki.oscada.org/HomePageEn/Doc/ModBus?v=ty5
http://wiki.oscada.org/HomePageEn/Doc/SNMP?v=22q
http://wiki.oscada.org/HomePageEn/Doc/System?v=10jr
http://wiki.oscada.org/HomePageEn/Doc/DiamondBoards?v=166v
http://diamondsystems.com/
http://wiki.oscada.org/HomePageEn/Doc/FireBird?v=gq1
http://wiki.oscada.org/HomePageEn/Doc/DBF?v=gw9
http://wiki.oscada.org/HomePageEn/Doc/PostgreSQL?v=aiw
http://wiki.oscada.org/HomePageEn/Doc/SQLite?v=gzh
http://wiki.oscada.org/HomePageEn/Doc/MySQL?v=kjf
http://wiki.oscada.org/HomePageEn/Doc/SelfSystem?v=tp1
http://wiki.oscada.org/HomePageEn/Doc/QTCfg?v=onm

• Archiving messages, conducting reports on various categories and levels by means of
mechanisms:

• Files in a XML-format or the flat text with packing the out-of-date archives. By means of
the archiving module FSArch.
• In tables of archival DB. By means of the archiving module DBArch.
• In plans. On other server, it is possible to the allocated archiving server, based on
OpenSCADA.

• Archiving of values of the collected data by means of mechanisms:
• Buffers in memory of the setting depth. By means of the built in archiving mechanism of
the values of kernel OpenSCADA.
• Files with double packing: consecutive and standard archiver gzip. By means of the
archiving module FSArch.
• In tables of archival DB. By means of the archiving module DBArch.

• Configuration and management PLC through:
• The WEB-interface. By means of a Web-browser and the UI-module WebCfgD or
WebCfg.
• From the remote configuration station. By means of the UI-module at configuration
station QTCfg and the interface of management OpenSCADA reflected in the protocol
SelfSystem.

• Data storage PLC in a DB of types:
• All data in a configuration file (fixed).
• MySQL. By means of the DB-module MySQL.
• SQLite. By means of the DB-module SQLite.
• PostgreSQL. By means of the DB-module PostgreSQL.
• DBF. By means of the DB-module DBF.
• FireBird. By means of the DB-module FireBird.
• In plans. DB accessible on other server based on OpenSCADA.
• In plans. LDAP.

Functional characteristics and demands of OpenSCADA system 18

http://wiki.oscada.org/HomePageEn/Doc/FireBird?v=gq1
http://wiki.oscada.org/HomePageEn/Doc/DBF?v=gw9
http://wiki.oscada.org/HomePageEn/Doc/PostgreSQL?v=aiw
http://wiki.oscada.org/HomePageEn/Doc/SQLite?v=gzh
http://wiki.oscada.org/HomePageEn/Doc/MySQL?v=kjf
http://wiki.oscada.org/HomePageEn/Doc/SelfSystem?v=tp1
http://wiki.oscada.org/HomePageEn/Doc/QTCfg?v=onm
http://wiki.oscada.org/HomePageEn/Doc/WebCfg?v=145q
http://wiki.oscada.org/HomePageEn/Doc/WebCfgD?v=kke
http://wiki.oscada.org/HomePageEn/Doc/DBArch?v=kot
http://wiki.oscada.org/HomePageEn/Doc/FSArch?v=6q4
http://wiki.oscada.org/HomePageEn/Doc/DBArch?v=kot
http://wiki.oscada.org/HomePageEn/Doc/FSArch?v=6q4

 2. Requirements for OpenSCADA

 2.1. Execution

The demands to apparatus for OpenSCADA system execution at different roles viewed into table 1. The
demands to programs for OpenSCADA system execution and it modules allow into table 2.

Table 1. The demands to apparatus for OpenSCADA system and it modules.
Role Demands

SCADA system's
server

CPU: x86_32 (more than i586), x86_64 or ARM, with frequency more 500 MHz
MEM: 128 MB
HDD: 10 GB include OS and place for archives

Station of the operator
of technological
process, the board of
the dispatcher, the
panel of monitoring,
etc.

CPU: x86_32 (more than i586), x86_64 or ARM, with frequency more 1 GHz
MEM: 512 MB
HDD: 4 GB include OS without archives place

The environment of
execution of
controllers (PLC)

CPU: x86_32 (more than i586), x86_64 or ARM, with frequency more 133 MHz
MEM: 32 MB
HDD: 32 MB include OS without archives place.

Table 2. Dependences of performance of OpenSCADA system and its modules.
Component Description

Dependences of OpenSCADA system's kernel

OS Linux
The distribution kit of operating system Linux (ALTLinux, SuSELinux,
Mandriva, ASPLinux, Fedora, Debian, Ubuntu ...)

"Standard libraries"

Standard set of libraries: GLibC (>= 2.3) or uCLibC (>= 0.9.32) and libstdc++
(>= 3.3). Certainly this already allow into installed distribution. Special
demand is using native thread library NPTL, already used for all modern
distributions of the Linux.

zlib Compression library.

libpcre Library for use regular expressions, compatible with Perl.

libgd
(opt: --disable-LibGD)

Graphic library GD version 2, it is desirable that it will be without XPM
support (dependence on library of a X-server is excluded) and support of
FontConfig.

DB.MySQL module

libMySQL Library for access to MySQL DBMS.

DB.SQLite module

libsqlite3 Library for access to built in DB SQLite version 3.

DB.PostgreSQL module

libpq Library for access to PostgreSQL DBMS version more 8.3.0.

DB.FireBird module

FirebirdSS
FireBird DBMS version 2. Often is absent in distribution kits of Linux and
demands individual loading from an official site (http://www.firebirdsql.org)!

Transport.SSL module

libssl Library for codifying OpenSSL.

Functional characteristics and demands of OpenSCADA system 19

http://www.firebirdsql.org/

Component Description

DAQ.SNMP module

libsnmp Library for access to data of network devices under SNMP protocol.

DAQ.System module

libsensors (opt: auto) Hardware sensors' library versions 2 and 3.

DAQ.SoundCard module

libportaudio Multiplatform library for access to sound controller version 19 and higher.

DAQ.OPC_UA module

libssl Library for codifying OpenSSL.

Modules: UI.QTStarter, UI.QTCfg

libQT4
(libQtCore,libQtGui) Library for construction of user graphic interface QT version 4.3 and higher.

Module: UI.Vision

libQT4
(libQtCore,libQtGui) Library for construction of user graphic interface QT version 4.3 and higher.

libfftw3 (opt: auto) Library for fast Fourie transfer of signals.

libphonon (opt: auto) Library for full formatted video and audio play.

Modules: UI.WebVision, Special.FLibSYS

libfftw3 (opt: auto) Library for fast Fourie transfer of signals.
* "opt: auto" — provides for disable of using the library at build time on it absence.

Functional characteristics and demands of OpenSCADA system 20

 2.2. Building

Dependences of system OpenSCADA for building of the OpenSCADA kernel and its modules are
tabulated bellow.

Table 3. Dependences of building of OpenSCADA system and its modules.
Component Description

The general requirements for building OpenSCADA

OS Linux The distribution kit of operating system Linux (ALTLinux, SuSELinux,
Mandriva, ASPLinux, Fedora, Debian, Ubuntu ...)

g++
The compiler of language C++ version 3.3 and more from a collection of
compilers GCC, including library GLibC (>=2.3) or uCLibC (>= 0.9.32).

autotools (autoconf,
automake, libtool)

Tools for formation of building environment of OpenSCADA. They are
necessary only in the case of changing building environment of
OpenSCADA, for example for addition of the new module or change of the
fixed parameters of building.

gettext
Group of utilities for preparation and compilations of translations of the
interface of programs on various languages in conformity with
internationalization standard I18N.

zlib (devel) Compression library, a package for development.

libpcre (devel)
Library for use regular expressions, compatible with Perl, a package for
development.

libgd (devel,
opt: --disable-LibGD)

Graphic library GD version 2, a package for development, it is desirable that
it will be without XPM support (dependence on library of a X-server is
excluded) and support of FontConfig. It is used for construction of trends
and other images in PNG format.

DB.MySQL module

libMySQL (devel) Library for access to MySQL DBMS, a package for development on
language C.

DB.SQLite module

libsqlite3 (devel) Library for access to built in DB SQLite version 3, a package for
development.

DB.PostgreSQL module

libpq Library for access to PostgreSQL DBMS version more 8.3.0, a package for
development.

DB.FireBird module

FirebirdSS
FireBird DBMS version 2, a package for development. Often is absent in
distribution kits of Linux and demands individual loading from an official
site (http://www.firebirdsql.org)!

Transport.SSL module

libssl (devel) Library for codifying OpenSSL, a package for development.

DAQ.JavaLikeCalc module

bison The program of generation of parsers on the basis of grammar of language.

DAQ.SNMP module

libsnmp (devel) Library for access to data of network devices under SNMP protocol, a
package for development.

Functional characteristics and demands of OpenSCADA system 21

http://www.firebirdsql.org/

Component Description

DAQ.System module

libsensors (devel, opt: auto) Hardware sensors' library versions 2 and 3, a package for development.

DAQ.Siemens module

glibc-kernheaders Linux-kernel headers by library GLibC.

DAQ.SoundCard module

libportaudio (devel)
Multiplatform library for access to sound controller, a package for
development version 19 and higher.

DAQ.OPC_UA module

libssl (devel) Library for codifying OpenSSL, a package for development.

Modules: UI.QTStarter, UI.QTCfg

libQT4 (devel)
Library for construction of user graphic interface QT version 4.3 and higher,
package for development.

Module: UI.Vision

libQT4 (devel)
Library for construction of user graphic interface QT version 4.3 and higher,
package for development.

libfftw3 (devel, opt: auto) Library for fast Fourie transfer of signals, package for development.

libphonon (devel, opt: auto) Library for full formatted video and audio play, package for development.

Modules: UI.WebVision, Special.FLibSYS

libfftw3 (devel, opt: auto) Library for fast Fourie transfer of signals, package for development.
* "opt: auto" — provides for disable of using the library at build time on it absence.

Functional characteristics and demands of OpenSCADA system 22

OpenSCADA program description
This document is a description of the "open source" project called "OpenSCADA". OpenSCADA is a

SCADA system built on the principles of modularity, scalability and multiple OS/Hardware integration.

As a policy the development of the system utilized "open source" principles. This choice allowed for the
creation of a reliable and publicly available SCADA system. At the same time bringing together a
significant number of product developers, enthusiasts and other stake holders to develop, test, and
disseminate the project, thus minimizing the financial and distribution costs.

OpenSCADA is designed for the collection and archiving of system data plus the visualization and
controlling of process operations typical of SCADA systems. Due to the level of scalability and
modularization the system can be used in a variety of applications.

OpenSCADA can be used:
• at industrial facilities as a full featured SCADA system;
• in embedded devices, as an execution environment, including within a PLC (programmable logic
controller);
• to build technological, chemical, physical or electrical processes models;
• at data centers or other server facilities to collect, process, present and archive data regarding the
PCs, servers and clusters and their network and environment.

The host operating system selected for development was Linux has it optimized the solutions of the
following issues:

• reliability — a large proportion of servers and clusters running on GNU/Linux OS;
• flexibility/scalability — due to its openness and modularity Linux allows the designer to create
solutions to fix any requirements
• availability — due to being GPL the software is provided at no cost (novice users may require
some kind of paid support package however skilled user would not require this level of support);
• popularity and support — Linux is in active development by many enthusiasts, businesses and
government agencies throughout the world, and is gaining wide spread support on the personal and
the corporate marketplace, plus it is being promoted in the state structures of various countries.

While the system currently operates only on the Linux OS the project is being developed so that it can be
installed on different operating systems. This ability to port to other OS will be added in future revisions.

At the heart of the system is a modular kernel, and depending on what modules are installed the system
can configured to operate on a variety of networked servers and clients and in this way allow for the
implementation of a client-server architecture saving machine memory, disk space, and programming time.
However it is possible to configure the OpenSCADA on a single stand alone PC with the user choosing
which modules to install, data acquisition, simple client, or both the client and server.

Differing server configuration can be designed for collecting data, processing data, issuing commands,
archiving and logging information, and providing this information to clients (UI, GUI, TUI ...). The
modular architecture allows for modification of a module’s functionality without the requirement of
restarting the whole system.

Flexible system configuration allows the user to build solutions to meet specific requirements of
reliability, functionality and complexity. Custom configurations can be based on different graphics libraries
(GUI/TUI ToolKits), using the core program and selecting various modules (by adding it to the UI-user
interface module), or the system can be used in a standalone application connecting the core of
OpenSCADA to its libraries.

OpenSCADA program description 23

 1. Functions of the system.

Fig. 1. The block scheme of OpenSCADA system

 1.1. Modularity.

In order to achieve flexibility and a high degree of scalability OpenSCADA is constructed in a modular
fashion. The process of developing our own modules imposed a great risk; possible errors could introduce
an element of instability into the system, however tight integration of the modules with kernel lessened this
issue and the ability to create a distributed configuration was seen as a greater benefit. In the end a more
flexible and stable system was created.

OpenSCADA modules are stored within dynamic libraries and each shared library can contain modules
of various types. The specific functional modules that are contained in a library is determined by the
specifics of the modules connections. These dynamic libraries are hot swappable, which allows for the
updating of a specific module without affecting the system as a whole. This method of storing code
modules in dynamic libraries is essential for OpenSCADA, because it is supported by virtually all modern
operating systems (OS). However, this does not exclude the possibility of developing other methods of
storing code modules.

OpenSCADA has the following functional parts or modules:
• databases;
• communication transports interfaces;
• communication protocols;
• data sources and data acquisition;
• archives (messages and values);
• user interfaces(GUI, TUI, WebGUI, speech, signal...);
• additional and special (for Special subsystem) modules.

Management of the modules is carried out by the "Modules Management" subsystem, whose functions
include connection, switching off, updating, and other operations concerned with the management of the
modules and their libraries.

OpenSCADA program description 24

 1.2. Subsystems.

Architecturally OpenSCADA is divided into subsystems or two types, regular and modular. Modular
subsystem have the ability to expand through the addition of modules, with each modular subsystem
containing sets of modular objects. For example the modular Database subsystem contains modular objects
of the database type, thus the modular object is the root of the module.

The basic configuration of OpenSCADA consists of nine subsystems with seven being modular. These
nine subsystems are present at every configuration. Additional subsystems can be created by adding
additional modules. The following lists the basic subsystems of OpenSCADA:

• Security — non-modular.
• Modules Scheduler — non-modular.
• Data Bases — modular.
• Transports — modular.
• Transport Protocols — modular.
• Data Acquisition — modular.
• Archives (Histories) — modular.
• User Interfaces — modular.
• Specials (Speciality) — modular.

 1.3. PLC and other sources of dynamic data. A subsystem "Data acquisition".

The Data Acquisition subsystem supports dynamic data sources whether PLC controllers, USO boards,
virtual, or other sources. The functions of this subsystem are to provide data in a structured manner and the
management of the data, i.e. data modification.

Since the Data Acquisition subsystem is modular it contains objects of the dynamic data source type. For
example in October 2007 OpenSCADA supported the following data sources:

• "Diamond Systems" data acquisition cards.
• OS data acquisition.
• The Block calculator.
• Calculator in Java-like language.
• Data communicated from one OpenSCADA system to another.
• PLC data via the Modbus protocol.
• Network Device data via the SNMP protocol.
• OpenSCADA logic level system data.
• CIF50PB Profibus communications card, connecting to logic controllers via the MPI protocol.

Each data source requires a separate module that can be connected or disconnected, with a module
communicating to one or more devices(controllers).

Each controller contains parameters with the types, defined by the module. The parameter provides the
list of attributes which contain the data. Parameter's attributes can be one of four basic types, string(text),
integer, float and boolean. For example an analog parameter can contain data in either integer or float
format.

The structures of a controllers, parameters and their types are contained in the Data Acquisition
subsystem so that the module objects can specifically fill in these structures.

A source of dynamic data can be on a remote OpenSCADA system. In this case the data source would be
the OpenSCADA data transport. The function of this type of data source is to mirror of the data sources on
the local system.

OpenSCADA program description 25

 1.4. Databases. A subsystem of "Database"

For a data storage of system databases (DB) are everywhere used. With a view of systematization of
access and management of databases in OpenSCADA system the subsystem "Database" is provided. For
support of various DB/DBMS the subsystem is modular.

In a role of the modular objects, containing in a subsystem, type DB/DBMS acts, i.e. the module of a
subsystem "Database", which practically contains realization of access to the certain type of a DB. For
example modules: DBF, MySQL, SQLite.

The object of type DB/DBMS, in its turn, contains the list of objects of separated DB of the given type.
And the object of a DB contains the list of objects of tables which are contained by data in the tabulated
form.

Practically all the data of OpenSCADA system are stored in this or that DB. The toolkit of system allows
to transfer easily the data from one type of a DB on another and as consequence provide an optimum
selection of DB type under the concrete area of OpenSCADA system. Transfer of the information from one
DB to another can be made by two ways. The first is a change of the address of a working DB and save of
all system on it, the second is a direct copying the information between DB. Except for copying the
function of direct editing of contents of tables of a DB is supported also.

For the organization of the centralized access of the allocated system to a uniform DB two ways are
provided. The first is using of network DBMS, for example MySQL. The second way is using of transport
type of a DB on local systems for access to one central DB (It is planned.). Function of a transport DB is
transfer of queries to a DB on remote OpenSCADA system.

Data can be stored also in a configuration file of system. The mechanism of full reflection of structure of
a DB on structure of a configuration file is realized. I.e. the standard configuration can be placed in a
configuration file. An essence of such mechanism that by default for example at start without a DB, it is
possible to describe the data of system in a configuration file. In the further, these data can be redefined in a
DB. Besides for cases of impossibility of start of any DB generally, it is possible to store all data in a
configuration file.

For access to databases the mechanism of registration of a DB is used. Registered DB in system are
accessible to all subsystems of OpenSCADA system and can be used in their work. Owing to this
mechanism it is possible to provide an allocation of data storage. For example, various libraries can be
stored and extend independently, and connection of library will consist in simple registration of the
necessary DB.

In the further, realization of duplication of a DB by linkage of the registered DB is planned. This
mechanism will allow to increase considerably reliability of OpenSCADA system as a whole by reservation
of the mechanism of a data storage. (It is planned.)

 1.5. Archives. A subsystem "Archives".

Any SCADA system gives an opportunity of archiving the acquisition data, i.e. formation of history of
change (dynamics) of processes. Archives, conditionally, it is possible to divide into two types: archives of
messages and archives of values.

Feature of archives of messages is that the subject of archiving are, so-called, events. A characteristic
attribute of event is time of occurrence of this event. Archives of messages, usually, are used for archiving
messages in system, i.e. conducting logs and reports. Depending on a source, messages can be classified by
various criteria. For example, it can be reports of emergencies, reports of actions of operators, reports of
failures of connection, etc.

Feature of archives of values is their periodicity defined by the time interval between two adjacent
values. Archives of values are applied for archiving of history of continuous processes. As far as process is
continuous and it's archiving is possible only by introduction of conception of quantization of interrogation
of values as differently we receive archives of the infinite sizes, in view of a continuity of the nature of
process. Besides, practically, we can receive values with the period limited by sources of data. For example,

OpenSCADA program description 26

qualitative enough sources of data, in the industry, data with frequency more 1kHz seldom allow to obtain.
And it without taking into account sensors having even less qualitative characteristics.

For the decision of tasks of archiving data flows in OpenSCADA system the subsystem "Archives" is
provided. The subsystem "Archives" allows to conduct both: archives of messages and archives of values.
The subsystem "Archives" is modular. The modular object containing in a subsystem "Archives" the type of
the archiver acts. The type of the archiver defines the way of a data storage, i.e. storehouse (file system,
DBMS, a network, etc.). Each module of a subsystem "Archives" can realize both: archiving of messages,
and archiving of values. The subsystem "Archives" can contain set of the archives served by various
modules of a subsystem.

The message in OpenSCADA system is characterized: by date, by level of importance, by category and
the text of the message. Date of the message specifies for the period of creation of the message. The level of
importance specifies a degree of importance of the message. The category determines the address or the
conditional identifier of a source of the message. Usually, the category contains a full way to a source of the
message in system. The text of the message, actually, also carries meaning content of the message.

During archiving messages are passed through the filter. The filter works on a level of importance and a
category of the message. The level of the message in the filter specifies that it is necessary to pass messages
with specified or higher level of importance. To filtering on a category templates or regular expressions are
used, which define what messages are applied to pass. Each archiver contains own options of the filter.
Consequently it is possible to create easily various specialized archivers for archive of messages. For
example archivers of messages it is possible to dedicate on:

• logs for storage of the debugging information and other working information of a server;
• various reports (the report of actions of clients, the report of infringements and exceptions, the
report of events...).

In view of the similar nature of the messages and the alarms, the subsystem "Archives" contains a buffer
of current alarms, which contains active at the time the alarms with using the message category as a key
identifier of the alarm. Access to the list-buffer of current alarms specifying by a negative value level
messages. Thus, the formation of negative message with level -2 cause place in this message to buffer
active alarms with level 2, as well as duplication of directly to messages archive. At the subsequent
formation of the message in the same category, but a positive level, say 1, will be carried deletion of the
specified alarm from the buffer of alarms and also the message fall into messages archive. This mechanism
allows you to simultaneously keep track of active alarms and log their passage into the messages archive.
When requesting to archive messages, an set of a positive level makes a request to archive messages, and a
negative to buffer-list of current alarms.

The archive of values in system OpenSCADA acts as an independent component which includes the
buffer processable by archivers. Key parameter of archive of value is the source of data. In a role of a
source of data attributes of parameters of OpenSCADA system and also other external sources of data (a
passive mode) can act. Other sources of data can be: network archivers from remote OpenSCADA systems,
the environment of programming of OpenSCADA system, etc.

Key component of archiving of values of continuous processes is the buffer of values. The buffer of
values is intended for intermediate storage of a file of the values received with certain periodicity (quantum
of time). The buffer of values is used as for direct storage of big arrays of values in archives of values,
before direct "retire" on physical carriers, and for manipulations with the staff of values, i.e. in functions of
frame-accurate query of values and their placement in buffers of archives.

For the organization of the dedicated archivers, in the allocated systems it is possible to use transport
type of the archiver (It is planned.). Function of transport type of the archiver is reflection of the remote
central archiver on local system. As consequence, archivers of transport type carry out data transmission
between local system and the archiver of the remote system, hiding from subsystems of local system the
real nature of the archiver.

OpenSCADA program description 27

 1.6. Communications. Subsystems "Transports" and "Transport protocols".

As far as the OpenSCADA system is pawned as is high-scaled system that support of communications
should be flexible enough. For satisfaction of a high degree of flexibility, communications in OpenSCADA
system are realized in subsystems "Transports" and "Transport protocols" which are modular.

The subsystem "Transports" is intended for an exchange of the not structured data between
OpenSCADA system and external systems. In a role of external systems can act even remote OpenSCADA
systems. Not structured data are understood as a file of symbols of the certain length. The modular object
containing in a subsystem "Transports", the type of transport acts. The type of transport defines the
mechanism of transfer of not structured data. For example it can be:

• sockets (TCP/UDP/UNIX);
• channels;
• shared memory.

The subsystem "Transports" includes support of input and output transports. Input transport is intended
for service of external queries and sending of answers. Output transport, on the contrary, is intended for
sending messages and expectation of the answer. Consequently, input transport contains a configuration of
the given station as server, and output transport contains a configuration of the remote server. The module
of a subsystem "Transports" realizes support both: input and output transports.

The subsystem "Transport protocols" is intended for structuring of data received from a subsystem
"Transports". As a matter of fact, the subsystem "Transport protocols" is continuation of a subsystem
"Transports" and carries out functions of check of structure and integrity of the received data. So, for the
indication of the protocol together with which transport should work, the special configuration field is
provided. The modular object containing in a subsystem "Protocols" is the protocol. For example, transport
protocols can be:

• HTTP (Hyper Text Transfer Protocol);
• SelfSystem (OpenSCADA the system protocol).

The full chain of connection can be written down as follows:
• the message is transferred in transport;
• transport transfers the message to the protocol, connected with it, by creation of new object of the
protocol;
• the protocol checks integrity of data;
• if all data have come, transport must be informed about the termination of expectation of data and
to transfer it the answer, differently to inform, that it is necessary to expect still;
• transport, having received {confirmation, sends the answer and delete object of the protocol;
• if confirmations are not present, the transport continues expectation of data, and in the case of
their receipt transfers them to the saved object of the protocol.

Protocols for output transports are supported also. The output protocol incurs function of dialogue with
transport and realization of features of the protocol. The internal side of access to the protocol is realized by
data-flow way with own structure for each protocol module. Such mechanism allows to carry out
transparent access to external system, by means of transport, simply specifying a name of the protocol by
means of which to serve transfer.

Owing to standard API-access to transports of OpenSCADA system it is possible to change easily a way
of data exchange not touching exchanging systems. For example, in the case of a local exchange it is
possible to use faster transport on the basis of shared memory, and in the case of an exchange through the
Internet and a local network to use TCP or UDP sockets.

OpenSCADA program description 28

 1.7. Interfaces of the user. A subsystem "Interfaces of the user".

SCADA-systems as a class, assume presence of user interfaces. In OpenSCADA, for granting the user
interfaces, the subsystem "The user interfaces" is provided. The user interface of OpenSCADA system is
understood not only as the environment of visualization from which the end user should work, but also as
everything, that concerns the user, for example:

• environments of visualization;
• configurators;
• alarming and signaling devices.

The subsystem "The user interfaces" is modular. As modular object of a subsystem the concrete interface
of the user actually acts. Modularity of subsystem allows to create various interfaces of users on various
GUI/TUI libraries and to use optimal of decisions in particularly taken case, for example, for environments
of performance of programmed logic controllers it is possible to use configurators and visualizers on the
basis of Web-technologies (WebCfg, WebUI), and in case of stationary workstations to use the same
configurators and visualizers, but on the basis of libraries QT, GTK.

 1.8. Security of system. A subsystem "Security".

The OpenSCADA system is the branched out system which consists of ten subsystems and can include
set of modules. Consequently, granting of unlimited access by all to these resources is at least unsafe.
Therefore, for differentiation of access in OpenSCADA system, the subsystem of "Security" is provided.
The basic functions of a subsystem "Security" are:

• storage of registration records of users and groups of users;
• authentication of users;
• check of access rights of the user to this or that resource.

 1.9. Management of libraries of modules and modules. A subsystem "Management of
modules".

The OpenSCADA system is constructed by a modular principle that means presence of set of modules
with which it is necessary to operate. For performance of function of management by modules of
OpenSCADA system the subsystem "Management of modules" is provided. All modules, for the present
moment are delivered in system by means of shared libraries (containers). Each container can contain set of
modules of various type.

The subsystem "Management of modules" realizes the control over the status of containers and allows to
carry out hot addition, removal and updating of containers and modules containing in them.

 1.10. Unforeseen opportunities. A subsystem "Special".

Certainly, to provide all probable functions it is impossible, therefore in OpenSCADA system the
subsystem "Special" is provided. The subsystem "Special" is modular and is intended for addition in
OpenSCADA system unforeseen functions by modular expansion. For example, by means of a subsystem
"Special" can be realized:

• tests of OpenSCADA system and its modules;
• libraries of functions of the user programming.

OpenSCADA program description 29

 1.11. The user functions. Objective model and the environment of programming of
system.

Any modern SCADA system should contain the mechanisms giving an opportunity to program at the
user level, i.e. to contain the environment of programming. The OpenSCADA system contains such
environment. By means of the environment of programming of OpenSCADA system it is possible to
realize:

• Algorithms of management of technological processes.
• Large dynamic models of real time of technological, chemical, physical and other processes.
• Adaptive mechanisms of management on models.
• The user procedures of management by internal functions of system, its subsystems and modules.
• Flexible formations of structures of parameters at a level of the user, with the purpose of creation
of parameters of non-standard structure and its filling on algorithm of the user.
• Auxiliary calculations.

The environment of programming of OpenSCADA system represents a complex of assets organizing the
computing environment of the user. Into structure of a complex of assets are included:

• objective model of OpenSCADA system;
• modules of libraries of functions;
• computing controllers of a subsystem "Data acquisition" and other calculators.

Modules of libraries of functions give set of functions of the certain orientation expanding objective
model of system. Libraries can be realized both: by the set of functions of the fixed type, and functions
supposing free updating and addition.

Libraries of functions of the fixed type can be given by standard modules of system, organically
supplementing objective model. Functions of such libraries will represent the interface of access to assets of
the module at a level of the user. For example, "The environment of visual data presentation" can give
functions for delivery of various messages. Using these functions the user can realize interactive algorithms
of communication with system.

Libraries of functions of free type give the environment of a writing of the user functions on one of
programming languages. Within the limits of the module of libraries of functions mechanisms of creation of
libraries of functions can be given. So, it is possible to create libraries of devices of technological processes,
and in a consequence to use them by linkage. Various modules of libraries of functions can give realizations
of various programming languages.

On the basis of the functions given by objective model, computing controllers are under construction.
Computing controllers carry out linkage of functions with parameters of system and the mechanism of
calculation.

OpenSCADA program description 30

 2. SCADA systems and their structure.

Fig. 2. SCADA-system.

OpenSCADA program description 31

SCADA (Supervisory Control And Data Acquisition), in a general view, have the allocated architecture
like represented on fig. 2. Elements of SCADA systems, in sense of the software, carry out following
functions:

The acquisition server: represents a task or group of tasks engaged in data acquisition from sources of
data, or act in a role as a source of data. Into tasks of a server enters:

• reception and-or formation of data;
• data processing;
• service of queries about access to data;
• service of queries about updating of data.

The server of archiving: represents a task or group of tasks engaged in archiving of data. Into tasks of
the server enters:

• archiving of data of SCADA-system;
• service of queries about access to contemporary records;
• import/export of archives.

The journaling server: represents a task or group of tasks engaged in archiving of messages. Into tasks
of the server enters:

• archiving of messages of units of SCADA-system;
• service of queries about access to archival messages;
• import/export of archives.

The alarm server: represents a task or group of tasks carrying out functions of the server of recording
concerning a narrow category of messages of the signal system.

The operator working place: represents constantly functioning GUI (Grafical User Interface)
application executed in an one-monitor, multimonitor or panel mode and carrying out functions:

• granting of the user interface for the control over a condition of technological process;
• granting of an opportunity of formation of operating influences;
• granting of an opportunity of studying and the analysis of history of technological process;
• granting of toolkit for generation of the reporting documentation.

The engineer working place: represents GUI application used for configuration of SCADA system.
Into tasks of the application enters:

• granting of toolkit for manipulation with system functions of system;
• granting of toolkit of a workplace of the operator;
• granting of toolkit for manipulation with architecture of SCADA system as a whole (distribution
of functions between stations, creation, removal of stations...).

The chief working place: represents GUI application, as a rule, executed in an one-monitor mode and
carrying out functions:

• granting of the user interface for the control over a condition of technological process;
• granting of toolkit for studying and the analysis of history of technological process as is direct
from an active server, and on the basis of separate archives;
• granting of toolkit for generation of the reporting documentation.

The technologist working place: completely includes functions of a workplace of the operator plus
model of technological process (without direct communication with technological process).

The work planner working place: completely includes functions of a workplace of the technologist
plus toolkit for creation of models of technological processes.

OpenSCADA program description 32

 3. Ways of configuration and using of OpenSCADA system.

 3.1. Simple server connection.

In the elementary case the OpenSCADA system can be configured in a server mode (fig. 3.1) for
acquisition and archiving of data. The given configuration allows to carry out following functions:

• interrogation of controllers;
• archiving of values of parameters;
• service of client queries about reception of various data of a server;
• granting of the configuration WEB-interface;
• the remote configuration from OpenSCADA system by means of the QT-interface or other local
interface.
• secondary regulation (regulation in computing controllers);
• modeling, adjusting and supplementing calculations in computing controllers.

Fig. 3.1. Simple server connection.

OpenSCADA program description 33

 3.2. The duplicated server connection.

For increasing of reliability and productivity the OpenSСADA system supposes plural reservation (fig.
3.2) at which controllers of one copy are reflected in other. At use of a similar configuration distribution of
loading of interrogation/calculation at various stations is possible. The given configuration allows to carry
out functions:

• interrogation of controllers;
• archiving of values of parameters;
• service of client queries about reception of various data of a server;
• reservation of parameters;
• reservation of archives;
• distribution of loading of interrogation on servers;
• granting of the configuration WEB-interface;
• secondary regulation (regulation in computing controllers);
• modeling, adjusting and supplementing calculations in computing controllers with an opportunity
of distribution of loading on servers.

Рис. 3.2. The duplicated server connection.

 3.3. The duplicated server connection on one server.

Special case of the duplicated connection is the duplicated connection within the limits of one server
(fig. 3.3), that is start of several stations by one machine with a crossing of parameters. The purpose of the
given configuration is increase of reliability and fault tolerance of system by reservation of software.

Fig. 3.3. The duplicated server connection on one server.

OpenSCADA program description 34

 3.4. Client access by means of the Web-interface. A place of the manager.

For visualization of data containing on a server, the good decision is to use the user WEB-interface (fig.
3.4). The given decision allows to use a standard WEB-browser at the client side and therefore is the most
flexible as it is not adhered to one platform, i.e. is multiplatform. However this decision has essential
imperfections: low productivity and reliability. In this connection it is recommended to use the given
method for visualization of noncritical data or data having a reserve highly reliable way of visualization.
For example, the good decision will be using of this method at the heads of plants where always exists
place(attendant position) with reliable way of visualization. The given configuration allows to carry out
following functions:

• interrogation of a server for data acquisition of visualization and a configuration;
• visualization of data in a kind accessible to understanding;
• formation of protocols, reports;
• manipulation with parameters supposing change.

Fig. 3.4. Client access by means of the Web-interface. A place of the manager.

 3.5. The automated workplace (place of the manager/operator).

For visualization of critical data, and also in case of if high quality and productivity is required, it is
possible to use visualization on the basis of OpenSCADA system configured with the GUI module (fig.
3.5). The given configuration allows to carry out following functions:

• interrogation of a server for updating current values;
• visualization of the interrogated data in a kind accessible to understanding;
• formation of protocols and reports;
• manipulation with parameters supposing changes.

Fig. 3.5. The automated workplace (place of the manager/operator).

OpenSCADA program description 35

 3.6. Automated workplace with a server of acquisition and archiving on the single
machine (a place of the operator, model...).

The full-function client-server configuration on the single machine (fig. 3.6) can be used for increasing
of reliability of system as a whole by start of the client and a server in different processes. The given
configuration allows, without consequences for a server, to stop the client and to do with it various
preventive works. It is recommended for use at stations of the operator by installation of two machines
combining in itself the station of the operator and redundant server. The given configuration allows to carry
out following functions:

• interrogation of controllers;
• service of client queries;
• visualization;
• delivery of operating influences;
• generation of protocols and reports;
• secondary regulation;
• modeling, adjusting and additional calculations in computing controllers;
• acquisition and visualization of the information on a personal computer, a server....

Fig. 3.6. Automated workplace with a server of acquisition and archiving on the single machine (a place of

the operator, model...).

OpenSCADA program description 36

 3.7. The elementary mixed connection (model, demonstration, configurator...).

The mixed connection combines functions of a server and the client (fig. 3.7). It can be used for test,
demonstration functions, and also for granting models of technological processes as a unit. In this mode
following functions can be carried out:

• interrogation of controllers;
• service of client inquiries;
• visualization;
• delivery of operating influences;
• generation of protocols and reports;
• secondary regulation;
• modeling, adjusting and supplementing calculations in computing controllers;
• acquisition and visualization of the current information on a personal computer, a server,
model...;
• a configuration of databases, connections, etc.

Fig. 3.7. The elementary mixed connection (model, demonstration, configurator...).

OpenSCADA program description 37

 3.8. The steady, allocated configuration.

The given configuration is one of variants of steady/reliable connection (fig. 3.8). Stability is reached by
distribution of functions on:

• to servers of interrogation;
• to the central server of archiving and service of client queries;
• to clients: automated workplaces and WEB-clients.

Fig. 3.8. The steady, allocated configuration.

The server of interrogation is configured on the basis of OpenSCADA system and represents the task
(group of tasks) engaged with interrogation of the controller (group of controllers of the same type). The
received values are accessible to the central server through any transport which support is added by
connection of the corresponding module of transport. For decrease in frequency of interrogation and size of
the network traffic the server of interrogation can be equipped with small archive of values. The
configuration of a server of interrogation is stored in one of accessible DB.

The central server of archiving and service of client queries carries out function of the centralized
acquisition and processing of parameters of servers of interrogation and their values. Access to servers of
interrogation is carried out by means of one of accessible in OpenSCADA transports+protocols (for
example it is SGA). For granting the uniform interface of access to parameters and controllers the module
Transporter which reflects data of servers of interrogation on structure of local parameters is used.

For performance of internal calculations and the additional analysis of parameters computing controllers
are used.

For versatile and deep archiving various modules of archives are used.

For access of clients to a server are used accessible for OpenSCADA network transports, for example it
is Sockets, and transport protocols, for an example it is the protocol OpenSCADA "SelfSystem".

The configuration of the central server is stored in one of accessible DB (for example it is network
DBMS MySQL).

For granting the user WEB-interface the module WebCfg by means of the transport protocol "HTTP" is
used.

OpenSCADA program description 38

Various clients, among them automated workplaces and WEB-clients, are carried out on the separated
machines in necessary quantity. The automated workplace is realized on the basis of OpenSCADA system.
Its functions include interrogation of values of parameters from the central server and their visualization on
the GUI interface(s). For reception of parameters in an automated workplace the module of reflection of the
remote parameters Transporter, also, is used. For granting access to archives the module of archive of
network type can be used. The configuration of an automated workplace can be stored in one of accessible
DB (for example it is network DBMS MySQL, located on the machine of the central archiving server).

OpenSCADA program description 39

 4. Configuration and adjustment of the system.
As it can be seen in the section above, OpenSCADA allows configuration for execution in various roles.

Support of this possibility is provided by the developed mechanisms for configuration and storage of
configuration data. This section contains a description of these mechanisms, designed to demonstrate the
flexibility and diversity, thereby allowing to use OpenSCADA to 100%.

In describing the configuration mechanisms and methods of its storage in this section it will be focused
the description of system-wide mechanisms. Features of the configuration of modules of subsystems of
OpenSCADA are provided in their own module's documentation.

In OpenSCADA it is used the formalized approach to describing the configuration interfaces based on
XML. In fact, features of the component's configuration are provided by the component itself, thereby
running through the whole system, as the nervous system of the organism. In terms of OpenSCADA it is
called the interface of control of OpenSCADA (Control interface). On the basis of the control interface the
graphical interfaces of the user configuration are generated by means of modules of OpenSCADA. This
approach has the following important advantages:

• Scalability. You can connect only the required configuration modules or use only the remote
mechanisms.
• Excluding the need to update the configurators with the addition of new modules/functions, as
well as the exclusion of "swelling" of the configurator, providing the support for all of history of
now unnecessary and obsolete modules/functions.
• Simplicity of the creation of the graphical interfaces of configuration on the different basis owing
to the clear formality.
• The possibility of dynamic configuration is available, ie configuration can be performed directly
while the running of the system both locally and remotely, directly controlling the result.
• The simple and special extensibility of the configuration interface by adding the configuration
fields on the control interface's description language only in the required components.

In OpenSCADA the three configuration modules on the different basis of visualization are provided.
Lets observe them and their configuration options:

• Configuration module on the GUI library QT (http://qt.nokia.com/products) — UI.QTCfg.
Provides an advanced configuration interface, allowing to operate as a local station and the remote
ones in the local and global networks, including secure connection.
• Configuration module based on the dynamic WEB-technologies (DHTML) — UI.WebCfgD.
Provides an advanced configuration interface, allowing to operate as a local server's station, and the
remote stations in the local and global networks, including work on the secure connection. Client
connection is provided through the usual Web-browser.
• Configuration module based on the static WEB-technologies (XHTML) — UI.WebCfg. Provides
an adequate configuration interface that allows to manage the local server's station via the usual
Web-browser.

Configuration values, changed in the configurators, as well as most of the data are stored in databases
(DB). Given the modularity of subsystems "DB", there can be different database. Moreover, there is the
possibility of storing different OpenSCADA parts in different databases of the same type and in the
database of different types as well.

In addition to the database configuration information may be contained in the OpenSCADA
configuration file, and passed through the command line parameter's when you call OpenSCADA. Saving
the configuration in the configuration file is carried out on an equal footing with the database. Standard
name of the OpenSCADA configuration file is /etc/oscada.xml. The format of the configuration file and
command line parameters we'll examine in the separate section.

Many of the settings and configuration objects OpenSCADA, which are executed or are already enabled,
are not applied immediately, as for changes, because the configuration is read/apply usually only when turn
on or start. Therefore to apply the changes, in such cases, it is enough to enable/disable enabled object or to
restart the running — start/stop.

OpenSCADA program description 40

http://wiki.oscada.org/HomePageEn/Doc/WebCfg?v=ecy
http://wiki.oscada.org/HomePageEn/Doc/WebCfgD?v=gkg
http://wiki.oscada.org/HomePageEn/Doc/QTCfg?v=18c3
http://qt.nokia.com/products

Further examining of the OpenSCADA configuration will be based on the interface of the configurator
UI.QTCfg, but the principles of work will be fully consistent with the rest of the configurators owing to the
generality in the control interface of OpenSCADA.

We will start examining with the configuration of system parameters of OpenSCADA, which is located
in the three tabs at the root page of the station:

• Tab "Station" contains basic information and configuration field of the station, Fig.4a. Here are
the provided fields and comments on them:

• ID — contains information about the station's identifier. It is specified by the command
line parameter --Station. When loading it is sought the section in the configuration file
appropriate to the station identifier, and if not detected, it uses the first available one.
• Station — indicates the localized station's name.
• Program — contains information on the program name. Usually it is OpenSCADA or
name of solution based on OpenSCADA.
• Version — contains the information on the current version of the programme.
• Host name — contains the information on the name of the machine that runs the station.
• System user — contains the information about the user on whose behalf the program is
executed in the system (OS).
• Operation system — contains the information about the name and version of operation
system, operation system kernel on which the program is executed.
• Frequency (MHZ) — contains the information about the frequency of the CPU, which
runs the program. The value of frequency is checked every 10 seconds and allows you to
monitor its change, for example, by the power management mechanisms.
• Realtime clock resolution (msec) — contains information about the possibility or
resolution of real-time clock of the operation system. It allows you to orient with the
minimum interval of time of periodic tasks, for example, for task of data acquisition.
• Internal charset — contains information about the charset in which text messages are
stored within the program.
• Config file — contains information about the configuration file used by the program. Set
by the command-line parameter --Config.
• Work directory — indicates the working directory of the station. It is used in relative
addressing of the objects in the file system, for example, database files. It allows the user to
save the modified system data to another database. The value of this field is not stored in the
database, but can be changed only in the "WorkDB" section of the configuration file.
• Icons directory — indicates the directory containing the program icons. If the
configuration navigation tree have no icons, then you have incorrectly entered the value of
this field.
• Modules directory — indicates the directory of modules for OpenSCADA. If the value of
this field is incorrect, then when at start you will not see any graphical interface, but the only
information in the console on the correct running of the OpenSCADA kernel.
• Work DB — indicates the working database (DB), namely, the database used to store
basic data of the program. Changing of this field notes all objects as modified that allows you
to save or to load station's data from the specified main database.
• Save system at exit — points to the need to save the changed data at finishing.
• Save system period — indicates the frequency in seconds with which to save the changed
station's data.
• Language — indicates the language of program's messages. Changing of this field is
acceptable, but leads to a change of messages' language only for the interface and dynamic
messages!
• Text variable's base language — is used to activate the support of multilingual text
variables by specifying a non-empty basic language. The value of the basic language is
selected from the list of bi-character language code, usually only the current and the base
language is in the list. Further for the text variables in the non basic language in the tables of
the database it will be created the separate columns. Under the text variables the all text
fields of configurator, which can be translated into another language are meant. Numbers and
other symbolic values are not in their number and are not translated.

OpenSCADA program description 41

• Messages: — section of the parameters' group that are processing by the work and
messages of the stations:

• Least level: — indicates the level of messages beginning from which they are to be
processed. Messages below this level will be ignored. It is necessary, for example, to
exclude from processing the debug messages of level 0.
• To syslog — indicates the need of sending the message to the system logger, the
mechanism of operation system for work with system messages and software. When
this option is enabled the possibility appears to manage and control the OpenSCADA
messages by the mechanisms of OS.
• To stdout — indicates the using as a standard mechanism to display the message
the output to the console. Disabling of this feature will eliminate the entire output in
the console, unless you specify the following parameter.
• To stderr — indicated the using as a standard mechanism to display the message
the error output, it is also usually sent to the console.
• To archive — indicated the need for output of the messages in the messages'
archive of OpenSCADA. This option is usually enabled and its disabling leads to the
actual disabling of the archiving at the station.

• Tab "Subsystems" tab contains the list of subsystems (Fig. 4b) and allows you to jump directly to
them using the context menu.
• Tab "Tasks" contains the table with opened tasks by OpenSCADA components (Fig.4c). From
table you can get several information about the tasks, and also set CPUs for tasks of multi-
processors systems.
• Tab "Help" tab contains the brief help for that page, Fig. 4d. In this case, it is the available
command line parameters and fields of configuration file for this page.

To modify the fields of this page it may be required the super user's rights. Get these rights you can by
means of including your user into the superuser's group "root", or by entering the station from the superuser
"root".

We must mention another one important point: the fields of the identifiers of all OpenSCADA objects
are unacceptable for direct editing, because they are keys for storage of objects' data in the database.
However, to change the object's identifier you can by the command of cutting and the further pasting of the
object (Cut-> Paste) in the configurator.

OpenSCADA program description 42

Fig. 4a. "Station" tab of the main page of the configuration of the station.

Fig 4b. "Subsystems" tab of the main page of the configuration of the station.

OpenSCADA program description 43

Fig 4c. "Tasks" tab of the main page of the configuration of the station.

Fig. 4d. "Help" of the main page of the configuration of the station.

OpenSCADA program description 44

While examining the configuration pages of modular subsystems there will be described the general for
all modules properties. However, it should be noted that each module can provide both: the additional tabs,
and separate fields for the configuration of their own functioning for the pages, objects of which are
inherited by modules. Information on the features and additions of modules can be found in separate
documentation for each of them.

 4.1. "DB" subsystem

The subsystem is the modular one and contains a hierarchy of objects depicted in Figure 4.1a. To
configure the subsystem the root page of the subsystem "DB" containing the tabs "Modules" and "Help" is
provided. Tab "Modules" (Fig. 4.1b) contains the list of modules in subsystem "DB", available at the
station. Tab "Help" tab contains a brief help for this page.

To modify the page's fields of this subsystem it may be required the super user's rights or the inclusion of
your user to the "DB" group.

Fig. 4.1a. The hierarchical structure of "DB" subsystem.

Fig. 4.1b. Tab "Modules" tab of the root page of "DB" subsystem.

OpenSCADA program description 45

Each module of the "DB" subsystem provides the configuration page with the following tabs: "DB" and
"Help". "DB" tab (Fig. 4.1c) contains the list of databases registered in the module and the flag of the sign
of full deleting of the database when making the delete command. In the context menu of the databases' list
the user is provided with an opportunity to add, delete and move to the desired database. The "Help" tab
contains information about the module of the "DB" subsystem (Fig.4.1d):

• Module — module's identifier.
• Name — module's name.
• Type — module's type, subsystem's identifier, which contains the module.
• Source — shared library — the source of the module.
• Version — module's version.
• Author — module's author.
• Description — module's short description.
• License — license agreement of module's distribution.

Fig. 4.1c. "DB" tab of the module of "DB" subsystem.

Fig. 4.1d. "Help" tab of the module of the "DB" subsystem.

OpenSCADA program description 46

Each database contains its own configuration page with the tabs "Data base", "Tables" and "SQL", in
case SQL-requests support. Besides the basic operations you can copy the contents of the DB by means of
the standard function for the copying the objects in the configurator. The copying operation the DB contents
involves the copying of the original database to the destination database, and the contents of the destination
database is not cleared before the copy operation. Copying the contents of database is made only when the
both databases are enabled, otherwise it will run a simple copy of the object of the database.

Tab "Data base" (Fig.4.1e) contains the main configuration options of the DB as follows:
• Section "State" — contains the properties which characterize the DB status:

• Enable — DB status "Enable".
• Accessible tables — list of tables that are in the database. Context menu of the property
gives the opportunity to physically remove the tables from the database.
• Load system from this DB — command to make load from this database. Can be used
when transferring data in the database between stations. For example, you can save the
section of one station in the export database, physically to move the DB to another station
and connect it in this subsystem, and call this command.

• Section "Config" — contains the following configuration fields:
• ID — contains the information on the DB identifier.
• Name — specifies the DB name.
• Description — short description of the DB and it's appointment.
• Address — DB address in the specific for the database type (module) in the format.
Format Description of the DB address recording format is usually available in the tooltip for
this field.
• Code page — indicates the code page, in which the text values of database are stored and
provided. The value of the code page of database in conjunction with the internal code page
of the station is used for clear transcoding of the text message while exchange between the
station and the database.
• To enable — indicates the state "Enable", in which to set the DB when start.

Tab "Tables" (Fig.4.1f) contains the list of the opened pages. In normal mode of the program operation
this tab is empty, because after the completion of working with tables the program closes them. The
presence of opened tables tells that the program is now working with tables or tables are opened by the user
to examine their contents. In the context menu of list of opened tables you can open the table for study (the
command "Add"), close the opened page (the command "Delete") and proceed to examination of the
contents of the table.

Tab "SQL" (Fig.4.1g) allow only for data bases which support SQL-requests, and contains field to
request enter, button to request send and table to result. To control the request transaction context provided
by separate configuration field.

OpenSCADA program description 47

Fig. 4.1e. Tab "Data base" of the DB of module of subsystem "DB".

Fig. 4.1f. Tab "Tables" of the DB of module of subsystem "DB".

OpenSCADA program description 48

Fig. 4.1g. Tab "SQL" of the DB of module of subsystem "DB".

OpenSCADA program description 49

Page of the examination of the contents of the table contains only one tab, "Table". Tab "Table" (Figure
4.1h) contains the field of the name of the table and the table with the contents. Table of contents provides
the following functions:

• table's cells content redaction;
• addition of the line;
• deleting of the line.

Fig. 4.1h. Tab "Table" of the DB table of the module of the subsystem "DB".

OpenSCADA program description 50

 4.2. Subsystem "Security"

The subsystem is not modular one. To configure the subsystem the root page of the subsystem "Security"
is provided, which contains the tab "Users and Groups" and "Help". Tab "Users and Groups" (Figure 4.2a)
contains the list of users and users' groups. Users in the group "Security" and with the rights of the
privileged user can add, delete the user or group of users. All other users can go to the page the user or the
users' group. Tab "Help" contains the brief help for this page.

Fig. 4.2a. Tab "Users and Groups" of the root page of the subsystem "Security".

OpenSCADA program description 51

To configure the user it is provided the page containing only the tab "User" (Fig.4.2b). Tab contains the
configuration data of the user's profile, which can be changed by the user itself, the user of the "Security"
group or the privileged user:

• Name — information about the name (identifier) of the user.
• Full name — specifies the full name of the user.
• User picture — specifies the user's picture. Picture can be loaded and saved.
• User DB — DB address for the user's data storage.
• Password — the field to change the user's password. It always displays "******".
• Groups — the table with a list of user groups of the station and with the sign of identity of the
user to the groups.

Fig. 4.2b. The tab "User" of the user's page of "Security" subsystem.

OpenSCADA program description 52

To configure the user's group it is provided the page containing only the tab "Group" (Fig.4.2c). Tab
contains the configuration data of the group's profile, which can be changed only by the privileged use:

• Name — information about the name (identifier) of the user's group.
• Full name — specifies the full name of the user's group.
• User group DB — DB address for the user group's data storage.
• Users — list of users included in this group. With the context menu of the list you can add or
remove the user in the group.

Fig. 4.2c. The tab "Group" of the user's group page of "Security" subsystem.

OpenSCADA program description 53

 4.3. Subsystem "Transports"

The subsystem is the modular one and contains the hierarchy of objects shown in Figure 4.3a. To
configure the subsystem it is provided the root page of the subsystem "Transports", containing the tabs
"Subsystem", "Modules" and "Help".

Fig. 4.3a. The hierarchical structure of subsystems "Transports".

The tab "Subsystem" (Figure 4.3b) contains the configuration table of the external stations for a given
OpenSCADA. External stations can be the system's and the user's ones that is selected by the appropriate
option. System's external stations are available only to the super user and are used by the components of the
system purpose, for example, the mechanism of the horizontal redundancy and module DAQ.DAQGate.
User's external stations are tied to the user who created them, and thus the list of user's external stations is
individual for each user. User's external stations are used by the components of graphical interface, for
example, UI.QTCfg, UI.WebCfgD and UI.Vision. In the table of the external stations it is possible to add
and delete records about the station, as well as their modification. Each station contains the following
fields:

• Id — identifier of the external station.
• Name — the name of the external host.
• Transport — the combobox of the subsystem's module "Transports" for the using of it when
access to the external station.
• Address — address of the external station if the format, specific to the chosen in the previous
field of the module of the subsystem "Transports".
• User — the name/identifier of the user of the external station on behalf of whom to perform the
connection.
• Password — password of the user of the external station.

OpenSCADA program description 54

http://wiki.oscada.org/HomePageEn/Doc/Vision?v=1bd1
http://wiki.oscada.org/HomePageEn/Doc/WebCfgD?v=3k3
http://wiki.oscada.org/HomePageEn/Doc/QTCfg?v=sc0
http://wiki.oscada.org/HomePageEn/Doc/DAQGate?v=mni

Tab "Modules" tab (fig. 4.1b) contains the list of modules in subsystem "Transports" and is identical for
all modular subsystems. Tab "Help" contains a brief help for this page.

Fig. 4.3b. Tab "Subsystem" of the root page of subsystem "Transports".

Each module of the subsystem "Transports" provides the configuration page with the tabs "Transports"
and "Help". The tab "Transports" (Fig.4.3c) contains the list of incoming and outgoing transports registered
in the module. The context menu of lists of transports provides the user with the possibility to add, delete
and move to the desired transport. On the "Help" tab it is provided the information about the module of
subsystem "Transports" (Fig. 4.1d), whose structure is identical for all modules.

Fig. 4.3c. The tab "Transports" of the module of subsystem "Transports".

OpenSCADA program description 55

Each transport contains its own configuration page with one tab "Transport". This tab contains the basic
settings of transport. Incoming transport (fig.4.3d) includes:

• Section "State" — contains the settings that characterize the state of the transport:
• Status — information on the current transport's status and statistics of its work.
• Running — state of the transport "Running".
• Transport DB — DB address to store the transport's data.

• Section "Config" — directly contains the configuration fields:
• ID — information on the transport's identifier.
• Name — specifies the transport's name.
• Description — brief description of the transport and its appointment.
• Address — transport's address in the specific for the type of transport (module) format.
Description of the record format addresses transport, as a rule, is available in the tooltip for
this field.
• Transport protocol — indicates the transport protocol module (subsystem "Transport
protocols") that should work in conjunction with the input transport. Ie the received
unstructured data this module will sent to the structuring and processing to the specified
module of the transport protocol.
• To start — indicates the status of "Running", in which to transfer the transport at startup.

Fig. 4.3d. Tab "Transport" of the page of incoming transport of module of subsystem "Transports".

OpenSCADA program description 56

Outgoing transport (Fig. 4.3e) contains:
• Section "State" — contains the settings that characterize the state of the transport:

• Status — information on the current transport's status and statistics of its work.
• Running — state of the transport "Running".
• Transport DB — DB address to store the transport's data.

• Section "Config" — directly contains the configuration fields:
• ID — information on the transport's identifier.
• Name — specifies the transport's name.
• Description — brief description of the transport and its appointment.
• Address — transport's address in the specific for the type of transport (module) format.
Description of the record format addresses transport, as a rule, is available in the tooltip for
this field.
• To start — indicates the status of "Running", in which to transfer the transport at startup.

Fig. 4.3e. Tab "Transport" of the page of outgoing transport of module of subsystem "Transports".

OpenSCADA program description 57

Outgoing transport, in addition, provides the tab for forming the user request via this transport (Fig.4.3f).
The tab is provided for setting communication, as well as for debugging the protocols and includes:

• Time (ms) — information about the time taken for request and receiving the answer.
• Mode — indicates the regime of data from the following list: "Binary", "Text(LF)", "Text(CR)",
"Text(CR/LF)", in which the request will be formed and the answer will be provided. In binary
mode data is recorded in pairs of numbers in hex, ie bytes, separated by spaces.
• Timeout wait — sign for expect by timeout when a response is received. Many systems in
response to various protocols (HTTP) are send the response data in several pieces. Without this flag
will be received and displayed only the first piece. When this flag will be set all the pieces awaiting
an answer, until the lack of data during the timeout the transport elapsed .
• Send — command to send a request.
• Request — contains the request in the selected mode of data representing.
• Answer — provides the answer in the selected mode of data representing.

Fig. 4.3f. The tab "Request" of the page of outgoing transport of module of subsystem "Transports".

 4.4. Subsystem "Transport protocols"

The subsystem is modular. To configure the subsystem the root page of the subsystem "Transport
Protocols" is provided, it contains the following tabs: "Modules" and "Help". The tab "Modules" (Fig. 4.1b)
contains the list of modules in subsystem "Transport Protocols" and is identical for all modular subsystems.
The tab "Help" contains a brief help for this page.

Each module of subsystem "Transport Protocols" provides configuration page with the only one tab —
"Help". On the tab "Help" there is the information on the module of subsystem "Transport Protocols" (Fig.
4.1d), which structure is identical for all modules.

OpenSCADA program description 58

 4.5. Subsystem "Data acquisition"

The subsystem is modular and contains the hierarchy of objects depicted in Fig.4.5a. To configure the
subsystem the root page of subsystem "Data acquisition" is provided, which contains the tabs "Template
libraries", "Modules" and "Help".

To obtain access to modify the objects of this subsystem the user of the group "DAQ" or the rights of the
privileged user are required.

Fig. 4.5a. The hierarchical structure of subsystem "Data acquisition".

Tab "Redundancy" (Fig. 4.5b) contains the configuration of redundancy of data sources of subsystem
"Data acquisition" of the station with the following settings:

• Status — contains information on redundancy scheme, at the moment this time spent on the
execution of one cycle of the task of reserve processing.
• Station level — indicates the level of the station in an arrangement (0-255).
• Redundant task period (s) — indicates the frequency of execution of redundancy task in seconds
(1-255).
• Restore connection timeout (s) — indicates over the which period of time to attempt to reconnect
with the lost redundant station in seconds (0-255).
• Restore data depth time (hours) — indicates the maximum depth of archival data to restore from
the archive of the remote station when start up in hours (0-12).
• Stations — contains the table with information about the redundant stations. Stations can be
added and removed via contextual menu. Id of the added stations is to be chosen from the list of
available OpenSCADA system stations. The table provides the following information about the
station:

• ID — ID of the system OpenSCADA station, should be changed after the addition by
choosing from the list of available ones;
• Name — name of the system OpenSCADA station;
• Live — sign of the connection with the redundant station;
• Level — level of the remote station in the redundancy scheme;
• Counter — requests' counter to the redundant station or waiting time, in the case of the
absence of connection;
• Run — the list of available controllers, with the sign (+) — the local execution controllers
on the remote station.

• Go to remote stations list configuration — command to go to the configuration page of the
remote OpenSCADA stations in the subsystem "Transports".

OpenSCADA program description 59

http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual?v=ksv#h932-4
http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual?v=ksv#h932-4

• Controllers — contains the table with the list of controllers, available for redundancy, and their
current status:

• Controller — full controller's ID;
• Name — controller's name;
• Started — the sign of the controller's execution on the local station;
• Redundant — redundancy mode of the controller can be changed from the list of: "Off"
and "Asymmetric";
• Preferable run — configuration of the preferred execution at the specified station can be
changed; reserved values: <High Level> — execution at the station with the highest level,
<Low Level> — execution at the station with the lowest level, <Optimal> — the choice for
the execution of the least loaded station.
• Remoted — sign indicating the execution of the controller on the remote station and work
the local station in mode with a remote data synchronization.

Fig. 4.5b. Tab "Redundancy" tab of subsystem "Data acquisition".

OpenSCADA program description 60

The tab "Template libraries" (Fig.4.5c) contains the list of libraries of templates for the parameters of
this subsystem. In the context menu of the list of template libraries the user can add, delete and move to the
desired library. The tab "Modules" (Fig. 4.1b) contains the list of modules in the subsystem "Transports"
and is identical for all modular subsystems. The tab "Help" contains the brief help for this page.

Fig. 4.5c. The tab "Template libraries" of the subsystem "Data acquisition".

OpenSCADA program description 61

Each template library of subsystem "Data acquisition" provides the configuration page with the tabs
"Library" and "Parameter templates". Tab "Library" (fig. 4.5d) contains the basic settings of the library:

• Section "State" — contains properties that characterize the state of the library:
• Accessing — state of library "Accessing".
• Library DB — address of the database for data storage of the library and templates.

• Section "Config" — directly contains the configuration fields:
• ID — information on the ID of the library.
• Name — specifies the name of the library.
• Description — short description of the library and its purpose.

Tab "Parameter templates" (Fig.4.5e) contains the list of templates in the library. In the context menu of
the list the user can add, delete and move to the desired template.

Fig. 4.5d. The main tab of configuration of template library of subsystem "Data acquisition".

Fig. 4.5e. The tab of the list of templates in the template library of subsystem "Data acquisition".

OpenSCADA program description 62

Each template of the template library provides the configuration page with the tabs "Template" and "IO".
The tab "Template" (Figure 4.5f) contains the basic settings of the template:

• Section "State" — contains properties that characterize the state of the template:
• Accessing — state of template "Accessing".
• Used — counter of the template's using. Allows you to determine whether the template is
used and, consequently, the ability to edit the template.

• Section "Config" — directly contains the configuration fields:
• ID — information on the ID of the template.
• Name — specifies the name of the template.
• Description — short description of the template and its purpose.

Fig. 4.5f. The main configuration tab of the parameters template of subsystem "Data acquisition".

The tab "IO" (Fig.4.5g) contains the configuration of attributes (IO) of templates and the program of
template on the one of languages of the user programming of OpenSCADA, for example,
DAQ.JavaLikeCalc.JavaScript. To the table of attributes of template user can, through the context menu,
add, insert, delete, move up or down the record of attribute, as well as edit the attribute's fields:

• Id — ID of the attribute.
• Name — the name of the attribute.
• Type — select the value's type of the attribute from the following: "Real", "Integer", "Boolean",
"String".
• Mode — select the mode of the attribute: "Input", "Output".
• Attribute — mode of the parameter's attribute, implemented based on a template from the list:
"No attribute" ,"Read Only","Full access". For the attributes of a template, in which this field is set,
it will be created an appropriate attribute in the controller's parameter of this subsystem.
• Configure — configuration mode of the attribute in the configuration tab of a template of the
controller's parameter of this subsystem from the list: "Constant", "Public constant", "Link". In
"Public constant" and "Link" modes tab in the configuration tab of the template will be added these
attributes to set the constant or specify an external link of the parameter.
• Value — attribute's default value or template of the links to access by the link. The format of the
link's template depends on the component that uses it. Usually for the module DAQ.LogicLev the
link's template is written the following way: {Parameter}|{attribute}. Field {Parameter} —
specifies the parameter's name as the attribute's container. Attributes with the equal value
{Parameter} will be grouped and will be appointed only by the indication of attributes' container,
and individual attributes will be associated with the attributes of the container in accordance with the
field {attribute}.

OpenSCADA program description 63

http://wiki.oscada.org/HomePageEn/Doc/LogicLev?v=mly

The syntax of the language of the template's program you can see in the documentation of the module,
providing an interpreter of the chosen language. For example, a typical user programming language of
OpenSCADA — DAQ.JavaLikeCalc

Fig. 4.5g. The configuration tab of the attributes and template's program of subsystem "Data acquisition".

OpenSCADA program description 64

http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc?v=f2a

Each module of the subsystem "Data acquisition" provides the configuration page with the tabs
"Controllers" and "Help". The tab "Controllers" (Fig.4.5h) contains the list of controllers, registered in the
module. In the context menu user can add, delete and move to the desired controller. The tab "Help"
provides information about the module of the subsystem "Data acquisition" (Fig. 4.1d), which structure is
identical for all modules.

Fig. 4.5h. The tab "Controllers" of the module of the subsystem "Data acquisition".

Each controller contains its own configuration page with the tabs "Controller" and "Parameters".

The tab "Controller" (Fig.4.5i) contains the basic settings. The structure of these settings may differ
slightly from one module of this subsystem to another, as you can find in the own documentation of
modules. As an example, lets examine the settings of the controller in the module of the controller of logic
DAQ.LogicLev:

• Section "State" — contains the properties, which characterize the state of the controller:
• Status — specifies the controller's status. In our case, the controller is running and the
computation time is 580 microseconds.
• Enable — the state of the controller "Enable". When enabled, the controller provides the
possibility of creating the parameters and their configuration.
• Run — the state of the controller "Run". The running controller performs the physical data
acquisition and/or includes mechanisms for access to these data.
• Controller DB — the address of the database for data storage of the controller and its
parameters.

• Section "Config" — directly contains the configuration fields:
• ID — information on the controller's identifier.
• Name — specifies the controller's name.
• Description — brief description of the controller and its purpose.
• To enable — indicates the status of "Enable" in which to transfer the controller at startup.
• To start — indicates the status of "Run" in which to transfer the controller at startup.
• Parameters tables — names of tables that store the parameters of different types (refers to
parameter objects of data acquisition).

OpenSCADA program description 65

http://wiki.oscada.org/HomePageEn/Doc/LogicLev?v=luo

• Calc schedule — defines a periodic or scheduled character of calculations. In our example
this one second of calculation template.
• Request task priority — sets the priority of data acquisition of this controller. It is used
when scheduling the operating system tasks. In the case of execution of the station as the
superuser "root", this field includes the planning of the controller's task in real time and with
the specified priority.

Fig. 4.5i. The main configuration tab of the controller of subsystem "Data acquisition".

OpenSCADA program description 66

"Parameters" tab (Fig.4.5j) contains a list of parameters in the controller, select the type of parameters
that are created by default, as well as information on the total number and the number of enabled
parameters. In the context menu user can add, delete and move to the desired parameter.

Fig. 4.5j. "Parameters" tab of the configuration page of the controller of subsystem "Data acquisition".

Parameters of the controllers of subsystem "Data acquisition" provides the configuration page with the
tabs "Parameters", "Attributes", "Archiving" and "Template config". The tab "Template config" is not
standard, but it is present only in the parameters of modules of subsystem "Data acquisition", which
implement the mechanisms of working under the template in the context of the data source, which they are
served, for logical type. In this review this tab is included for logical completeness of the review of the
configuration of templates of parameters of subsystem "Data acquisition" and as the final stage — using.

The tab "Parameter" (Fig.4.5k) contains the main settings:
• Section "State" — contains the properties, which characterize the state of the parameter:

• Type — specifies the type parameter. Type of disabled parameter can be changed if there
are multiple types.
• Enable — the state of the parameter "Enable". Enabled parameter is used by the controller
fro data acquisition.

• Section "Config" — directly contains the configuration fields:
• ID — information on the parameter's identifier.
• Name — specifies the parameter's name.
• Description — brief description of the parameter and its purpose.
• To enable — indicates the status of "Run" in which to transfer the parameter at startup.
• Parameter template — the address of the previously discussed template.

The tab "Attributes" (Fig.4.5l) contains the parametr's attributes and their values in accordance with the
configuration of the used template and calculation of its program.

OpenSCADA program description 67

The "Archiving" tab (Fig.4.5m) contains the table with the attributes of a parameter in the columns and
the archivers in rows. The user can set the archiving for the desired attribute with the required archiver
simply by changing the cell at the intersection.

The "Template config" tab (Figure 4.5n) contains the configuration fields in accordance with the
template. In this example it is the group link on the external parameter. This link can be set simply by
pointing the way to the parameter if the flag "Only attributes are to be shown" is not set, or to set the
addresses of the attributes separately in the case if the flag is set. Sign "(+)", at the end of the address
signals about successful linking and presence of the target.

Fig. 4.5k. The main configuration tab of the parameter of the controller of subsystem "Data acquisition".

Fig. 4.5l. The "Attributes" tab of the parameter of the controller of subsystem "Data acquisition".

OpenSCADA program description 68

Fig. 4.5m. The "Archiving" tab of the parameter of the controller of subsystem "Data acquisition".

Fig. 4.5n. The "Template config" tab of the parameter of the controller of subsystem "Data acquisition".

OpenSCADA program description 69

 4.6. Subsystem "Archives"

The subsystem is modular and contains the hierarchy of objects depicted in Fig.4.6a. To configure the
subsystem the root page of the subsystem "Archives" is provided, it contains tabs "Messages archive",
"Value archives", "Modules" and "Help".

To gain the access to modify the objects of this subsystem the user of the group "Archive" or the
privileged user rights are required.

Fig. 4.6a. The hierarchical structure of subsystem "Archives"

The "Messages archive" tab (Fig.4.6b) contains the configuration of messages archive and the request
form of messages from the archive.

Configuration of the messages archive is represented by the fields:
• Messages buffer size — indicates the dimension of the area of memory reserved for the interim
buffer of messages. Messages from the buffer are requested for viewing and archived with the
messages archivers.
• Archiving period (s) — the periodicity with which the archivers select messages from the buffer
for their archiving.

The messages request form contains the configuration fields of the request and the table of results.
Configuration fields of the request are:

• Time — specifies the request time.
• Size (s) — specifies the size and the depth of the request in seconds.
• Category pattern — specifies the category of the requested messages. In the category you can
specify the elements of a sample of the template, namely, the characters '*' — for any string and '?'
— for any character, as well as a regular expression enclosed between '/' (/mod_(System|
LogicLev)/).
• Level — indicates the minimum level of messages, ie request will be processed for messages with
a level more than or equal to the specified one.
• Archivator — indicates the messages archiver, for which the request is to be processed. If the
value is missing, the request will be processed for the buffers and all archivers. If <buffer> is
specified, then the request will be processed only for the messages buffer.

The result table contains rows of messages with the following columns:
• Time — message's time.
• Category — message's category.
• Level — message's level.
• Message — message's text.

OpenSCADA program description 70

Fig. 4.6b. The "Messages archive" tab of the subsystem "Archives".

OpenSCADA program description 71

Tab "Value archives" (Fig.4.6c) contains the general configuration of value's archiving and the list of
archives of values. In the context menu of the list of values the user has the opportunity to add, delete and
move to the desired archive. The general configuration of archiving is represented by the fields:

• Get data period (ms) — indicates the periodicity of the active archiving task. In fact, the highest
level of detail or the minimum period of active archives is determined by this value.
• Get data task priority level — sets the priority of task of active archiving. It is used when
scheduling the operating system tasks. In the case of execution of the station with the rights of the
superuser "root" this field includes scheduling of the archiving task in real time and with the
specified priority.

The "Modules" tab (Fig. 4.1b) contains a list of modules in subsystem "Archives" and is identical for all
modular subsystems. The "Help" tab contains the brief help for this page.

Fig. 4.6c. The "Value archives" tab of the subsystem "Archives".

Archive of values of subsystem "Archives" provides the configuration page with the tabs "Archive",
"Archivators" and "Values".

Tab "Archive" (Fig.4.6d) contains the basic settings of the archive:
• Section "State" — contains the properties, which characterize the state of the archive:

• Running — the state of the parameter "Running". Running archive collects data in the
buffer and is served by the archivators.
• Archive DB — database address for storing the archive's data.

• Section "Config" — directly contains the configuration fields:
• ID — information on the archive's identifier.
• Name — specifies the archive's name.
• Description — brief description of the archive and its purpose.
• To start — indicates the state "Running" in which to transfer the archive at startup.
• Value type — indicates the type of values which are stored in the archive from the list:
"Boolean", "Integer", "Real" и "String".

OpenSCADA program description 72

• Source — indicates the type and address of the source. Type of source is indicated from
the list: "Passive", "Passive param. attribute" or "Active param. attribute". Passive archive
does not have an associated source of values, the data to the such archive the source transfers
by itself, for example from users' calc procedures on internal programing language. Types
with the attribute of the parameter in the address field indicate the parameter of the
subsystem "Data acquisition" as the source. Passive attribute of the parameter sends data to
the archive by itself with its own period of data acquisition. Active attribute of the parameter
is queried by the archiving task of this subsystem. Virtually all sources of real data process
into passive and active mode of archiving as the data at once placed in the attribute
parameter, sometimes by time stamp. But calculators (DAQ.JavaLikeCalc, DAQ.LogicLev,
DAQ.BlockCalc) can only operate in active mode, archiving, because the data in the attribute
parameter is updated only with their direct request, and are taken from the execution context.
In the case of real data sources, the difference between active and passive mode of archiving
by the fact that in the passive mode the source can put data into the archive by timestamp,
and in active mode, the timestamp is always set to the current system time.
• Buffer period (s) — indicates the periodicity of values in the archive's buffer.
• Buffer size (items) — indicates the dimensionality and depth of the archive's buffer. The
dimensionality is usually set in terms of 60 sec of the periodicity of the archiving task with
the reserve.
• Buffer hard time griding — indicates the mode of the buffer. The hard grid mode involves
the memory reservation for each value, but without the timestamp. This mode eliminates the
possibility of packaging the adjacently-identical values, but also saves on storage of the
timestamp. Otherwise, the buffer operates in the mode of storage the value and timestamp
and supports the packaging of adjacently-identical values.
• Buffer high time resolution — indicates the possibility of storing values at intervals up to
1 microsecond, differently the values can be stored at intervals up to 1 second.

Fig. 4.6d. The main configuration tab of the values' archive of subsystem "Archives".

OpenSCADA program description 73

http://wiki.oscada.org/HomePageEn/Doc/BlockCalc?v=b3r
http://wiki.oscada.org/HomePageEn/Doc/LogicLev?v=yzr
http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc?v=kx0

Tab Archivators' (Fig.4.6e) contains the table with the configuration of the processing of the archive by
the available archivers. Lines are available archivers, and the columns are the following parameters:

• Archivator — information on the archiver's address.
• Start — information on the archiver's state "Started".
• Process — sign of the processing this archive be the archiver. The field is available for
modification by the user.
• Period (s) — information on the periodicity of the archiver.
• Begin — date of the archive data beginning in the archiver.
• End — date of the archive data ending in the archiver.

Fig. 4.6e. The "Archivators" tab of the values archive of subsystem "Archives".

OpenSCADA program description 74

Tab "Values" (Fig.4.6f) contains the values request in the archive and the result as a table of values or
image of the trend. Values request contains the fields:

• Time — indicates the time of request. It contains two fields: the field of date + time and
microseconds.
• Size (s) — specifies the size or depth of the request in seconds.
• Archivator — indicates values archiver for which the request is to be processed. If the value is
missing, the request will be processed for the buffer and for all archivers. If the <buffer> is
specified, then the request will be processed only for the archive's buffer.
• Show trend — indicates the necessity for presentation of the archive's data in the form of a graph
(trend), otherwise the result is presented in a table that contains only time and value. In the case of
installation of this field the schedule is formed and displayed, in addition additional configuration
fields of the image settings are appeared:

• Picture size — indicates the width and height of the generated image in pixels.
• Value scale — indicates the lower and upper limit of the scale of value. If both values are
set to 0 or equal, then the scale will be determined automatically depending on the values.

Fig. 4.6f. The "Values" tab of the values archive of subsystem "Archives".

OpenSCADA program description 75

Each module of the "Archives" subsystem provides configuration page with the tabs "Archivators" and
"Help". The "Archivators" tab (Fig.4.6g) contains a list of messages and values archivers registered in the
module. The context menu of the list provides user with possibility to add, delete and move to the desired
controller. The "Help" tab contains information about the module of subsystem "Archives" (Fig. 4.1d),
whose structure is identical for all modules.

Fig. 4.6g. The "Archivators" tab of the module of subsystem "Archives".

Messages archivers contains their own configuration page with tabs "Archivator" and "Messages".

The "Archivator" tab (Fig.4.6h) contains the basic settings. The structure of these settings may differ
slightly from one module of this subsystem to another as you can find in the own documentation of
modules. As an example we shall examine the settings of the messages archiver from the module of the
archive on the file system Arch.FSArch Settings:

• Section "State" — contains the properties, hich characterize the archivers' state:
• Running — archivers' state "Running". The running archiver processes the messages
archive buffer and puts his data in its repository, but also it processes requests for access to
data in the repository.
• Archivator DB — database address for storing the archiver's data.
• End — date + time of the last data in the archiver's repository.
• Begin — date + time of the first data in the archiver's repository.
• Archivator files size (kB) — information about the total size of the archiver's files with the
data.
• Archiving time (ms) — time spent on the archiving of messages archive data.

• Section "Config" — directly contains the configuration fields:
• ID — information on the archiver's identifier.
• Name — indicates the archiver's name.
• Description — brief description of the archiver and its purpose.
• Address — address of the storage in the specific for the type of archiver (module) format.
Format description usually available in the tooltip for this field. In the example it is the
relative path to the storage directory.
• Message level — indicates the level of archiver's messages. Messages with a level greater
than or equal to the specified one are processed by the archiver.

OpenSCADA program description 76

http://wiki.oscada.org/HomePageEn/Doc/FSArch?v=wpl

• Message categories — list of categories of messages, separated by ';'. Messages matched
with the templates or regular expressions of categories will be processed by the archiver. In
the category you can specify the elements of a sample of the template, namely, the characters
'*' — for any string and '?' — for any character, as well as a regular expression enclosed
between '/' (/mod_ (System|LogicLev)/).
• To start — indicates the status "Running", in which to transfer archiver at startup.

• Section "Additional options" — specialized section for module about the contents of which you
can read in the documentation on the module.

Fig. 4.6h. The main tab of the messages archiver configuration of subsystem "Archives".

OpenSCADA program description 77

The "Messages" tab (Fig.4.6i) contains the form of the messages request from the archive of the
archiver:

• Time — indicates the time of the request.
• Size (s) — indicates the size and depth of the request in seconds.
• Category pattern — indicates the category of the requested messages. In the category you can
specify the elements of a sample of the template, namely, the characters '*' — for any string and '?'
— for any character, as well as a regular expression enclosed between '/' (/mod_ (System|
LogicLev)/).
• Level — indicates a minimum level of messages, ie the request will be processed for messages
with the level greater or equal to the specified one.

The result table contains messages rows with the following columns:
• Time — message time.
• Category — message category.
• Level — message level.
• Message — message text.

Fig. 4.6i. Tab of the messages request "Messages" of the messages archiver of subsystem "Archives".

Values archivers contains their own configuration page with tabs "Archivator" and "Archives".

The "Archivator" tab (Fig.4.6j) contains the basic settings. The structure of these settings may differ
slightly from one module of this subsystem to another as you can find in the own documentation of
modules. As an example we shall examine the settings of the messages archiver from the module of the
archive on the file system Arch.FSArch Settings:

• Section "State" — contains the properties, hich characterize the archivers' state:
• Running — archivers' state "Running". The running archiver processes the messages
archive buffer and puts his data in its repository, but also it processes requests for access to
data in the repository.запросы на доступ к данным в хранилище.

OpenSCADA program description 78

http://wiki.oscada.org/HomePageEn/Doc/FSArch?v=zj3

• Archiving time (ms) — information about the time spent on archiving data of the archives
buffers. Periodicity of archiving is set in the field "Period archiving" in the section "Config"
of the tab.
• Archivator DB — database address for storing the archiver's data.

• Section "Config" — directly contains the configuration fields:
• ID — information on the archiver's identifier.
• Name — indicates the archiver's name.
• Description — brief description of the archiver and its purpose.
• Value period (s) — indicates the periodicity of values that are contained in the archiver's
repository.
• Period archiving (s) — indicates the periodicity of the archives buffers data archiving
task. The dimension of the archives buffers in the time expression must not be less, and
preferably somewhat greater then the periodicity of the of archiving task.
• Address — address of the storage in the specific for the type of archiver (module) format.
Format description usually available in the tooltip for this field. In the example it is the
relative path to the storage directory.
• To start — indicates the status "Running", in which to transfer archiver at startup.

• Section "Additional options" — specialized section for module about the contents of which you
can read in the documentation on the module.

Fig. 4.6j. The main tab of the values archiver configuration of subsystem "Archives".

OpenSCADA program description 79

The "Archives" tab (Fig.4.6k) contains a table with information about the archives being processed by
the archiver. In the rows the table contains archives, and in the columns — the following information:

• Archive — archive's name.
• Period (s) — archive's periodicity in seconds.
• Buffer size — buffer's dimension in units.
• Files size (Mb) — specific to the module Arch.FSArch field with information about the total size
of the files of the archiver's storage for the archive.

In the case of the module Arch.FSArch in this tab you can find the form of export the archiver's data.

Fig. 4.6k. The "Archives" tab of the values archiver of subsystem "Archives".

OpenSCADA program description 80

 4.7. Subsystem "User interfaces"

The subsystem is modular. To configure the subsystem the root page of the subsystem "User Interfaces"
is provided, it contains the tabs "Modules" and "Help". The "Modules" tab (Fig. 4.1b) contains a list of
modules of subsystem and it is identical for all modular subsystems. The "Help" tab contains a brief help
for this page.

Each module of the subsystem "User Interfaces" provides configuration page with the tabs "User
Interface" and "Help". The "User Interface" tab (Fig.4.7a) provides the parameter for monitoring the
"Running" status of the module, as well as the configuration sections specialized for the modules of this
subsystem. On the "Help" tab there is an information about the module of the subsystem "User Interfaces"
(Fig. 4.1d), which structure is identical for all modules.

Fig. 4.7a. The "User Interface" tab of the module of subsystem "User Interfaces".

OpenSCADA program description 81

 4.8. Subsystem "Specials"

The subsystem is modular. To configure the subsystem the root page of the subsystem "User Interfaces"
is provided, it contains the tabs "Modules" and "Help". The "Modules" tab (Fig. 4.1b) contains a list of
modules of subsystem and it is identical for all modular subsystems. The "Help" tab contains a brief help
for this page.

Each module of the subsystem "Specials" provides configuration page with the tabs "Special" and
"Help". The "Special" tab (Fig.4.8a) provides the parameter for monitoring the "Running" status of the
module, as well as the configuration sections specialized for the modules of this subsystem. On the "Help"
tab there is an information about the module of the subsystem "Specials" (Fig. 4.1d), which structure is
identical for all modules.

Fig. 4.8a. The "Special" tab of the module of subsystems "Specials".

OpenSCADA program description 82

 4.9. Subsystem "Modules scheduler"

The subsystem is not modular. To configure the subsystem the subsystem's page "Modules scheduler" is
provided, it contains tabs "Subsystem" and "Help". The "Subsystem" tab (Fig.4.9a) contains the basic
settings of the subsystem. The "Help" tab contains a brief help for this page. The structure of the tab
"Subsystem":

• Path to shared libs (modules) — information about the location of the directory with the modules
of the OpenSCADA system. It is set by the parameter <ModDir> of the station, of the configuration
file.
• Allowed modules — information about the list, separated by ',', of modules that are authorized for
automatic connection and renewal. The value of '*' is used to resolve all the modules. It is set by the
parameter <ModAllow> of the section of subsystem, sub_ModSched, of the station of the
configuration file.
• Denied modules — information about the list, separated by ';' of modules that are denied for
automatically connection and updating. It is set by the parameter <ModDeny> of the section of
subsystem "sub_ModSched" of station of configuration file. List of denied modules has higher
priority than allowed.
• Check modules period (sec) — indicates the periodicity of testing modules on the fact of their
updating. Modules that are allowed for automatically connection and updating will be automatically
updated.
• Check modules now — command to check the modules on the fact of their updating. Modules
that are allowed for automatically connection and updating will be automatically updated.
• Shared libs (modules) — table with the list of shared libraries with the modules detected by
OpenSCADA. Rows are modules, and in the columns there is an information about them:

• Path — information on the full path to the shared library.
• Time — information about the time the of last modification of a shared library.
• Modules — information about the list of modules in a shared library.
• Enable — state "Enable" of the shared library. Privileged users are provided with an
opportunity to manually enable/disable the shared libraries by changing this field.

Fig. 4.9a. The main configuration tab of subsystem "Modules scheduler".

OpenSCADA program description 83

 4.10. Configuration file of the OpenSCADA and parameters of command-line
OpenSCADA execution.

Configuration file of the OpenSCADA system is provided to store the system and general configuration
of OpenSCADA-station. Only in the configuration file and through the command-line options you can
specify the part of the key system parameters of the station, so familiarity with the structure of the
configuration file is necessary for professionals who make solutions based on OpenSCADA.

The configuration file of the OpenSCADA system can be called somehow, but the oscada.xml name and
derived from it are accepted. The configuration file is usually indicated when you start the station by the
command-line option --Config=/home/roman/roman/work/OScadaD/etc/oscada_demo.xml. For the
convenience of the calling the startup scripts of the station are created with the correct configuration file,
for example script (openscada_demo) of the demo station execution:

#!/bin/sh
openscada --Config=/etc/oscada_demo.xml $@

If the configuration file is not specified then the standard configuration file: /etc/oscada.xml is used.

Structure of the configuration file based on the extensible markup language XML. Therefore the strict
adherence to the rules of XML syntax is required. An example of the configuration file of the
OpenSCADA, with configuration nodes of most of the OpenASCADA components, is given below:
<?xml version="1.0" encoding="UTF-8" ?>
<OpenSCADA>

<!-- This is the OpenSCADA configuration file. -->
<station id="DemoStation">

<!-- Discribe internal parameter for station. Station this only OpenSCADA programm. -->
<prm id="StName">Demo station</prm>
<prm id="StName_ru">Демо станция</prm>
<prm id="StName_uk">Демо станція</prm>
<prm id="WorkDB">SQLite.GenDB</prm>
<prm id="Workdir">~/.openscada</prm>
<prm id="IcoDir">./icons</prm>
<prm id="ModDir">/usr/lib/openscada</prm>
<prm id="LogTarget">10</prm>
<prm id="MessLev">0</prm>
<prm id="Lang2CodeBase">en</prm>
<prm id="SaveAtExit">0</prm>
<prm id="SavePeriod">0</prm>

<node id="sub_BD">
<prm id="SYSStPref">0</prm>
<tbl id="DB">

<fld ID="GenDB" TYPE="SQLite" NAME="Generic DB" NAME_ru="Основная БД"
NAME_uk="Основна БД" ADDR="./DEMO/DemoSt.db" CODEPAGE="UTF-8"/>

</tbl>
</node>

<node id="sub_Security">
<!--
<tbl id="Security_user">

<fld
NAME="root"
DESCR="Super user"
DESCR_ru="Супер пользователь"
DESCR_uk="Супер користувач"
PASS="openscada"/>

<fld
NAME="user"
DESCR="System user"
DESCR_ru="Системный пользователь"
DESCR_uk="Системний користувач"
PASS=""/>

</tbl>
<tbl id="Security_grp">

<fld
NAME="root"
DESCR="Super users groups"
DESCR_ru="Группа суперпользователей"
DESCR_uk="Група суперкористувачів"
USERS="root;user"/>

</tbl>-->
</node>

OpenSCADA program description 84

<node id="sub_ModSched">
<prm id="ModAllow">*</prm>
<prm id="ModDeny"></prm>
<prm id="ChkPer">0</prm>

</node>

<node id="sub_Transport">
<!--
<tbl id="Transport_in">

<fld
ID="WEB_1"
MODULE="Sockets"
NAME="Generic WEB interface"
NAME_ru="Основной WEB интерфейс"
NAME_uk="Основний WEB інтерфейс"
DESCRIPT="Generic transport for WEB interface."
DESCRIPT_ru="Основной транспорт для WEB интерфейса."
DESCRIPT_uk="Основний транспорт для WEB інтерфейсу."
ADDR="TCP::10002:0"
PROT="HTTP"
START="1"/>

<fld
ID="WEB_2"
MODULE="Sockets"
NAME="Reserve WEB interface"
NAME_ru="Резервный WEB интерфейс"
NAME_uk="Резервний WEB інтерфейс"
DESCRIPT="Reserve transport for WEB interface."
DESCRIPT_ru="Резервный транспорт для WEB интерфейса."
DESCRIPT_uk="Резервний транспорт для WEB інтерфейсу."
ADDR="TCP::10004:0"
PROT="HTTP"
START="1"/>

</tbl>
<tbl id="Transport_out">

<fld
ID="testModBus"
MODULE="Sockets"
NAME="Test ModBus"
NAME_ru="Тест ModBus"
NAME_uk="Тест ModBus"
DESCRIPT="Data exchange by protocol ModBus test."
DESCRIPT_ru="Тест обмена по протоколу ModBus."
DESCRIPT_uk="Тест обміну за протоколом ModBus."
ADDR="TCP:localhost:10502"
START="1"/>

</tbl>-->
</node>

<node id="sub_DAQ">
<!--
<tbl id="tmplib">

<fld ID="test2" NAME="Test 2" NAME_ru="Тест 2" NAME_uk="Тест 2"
DESCR="" DESCR_ru="" DESCR_uk="" DB="tmplib_test2"/>

</tbl>
<tbl id="tmplib_test2">

<fld ID="test2" NAME="Test 2" NAME_ru="Тест 2" NAME_uk="Тест 2"
DESCR="" DESCR_ru="" DESCR_uk="" DB="test2"
PROGRAM="JavaLikeCalc.JavaScript
cnt=5*i"/>

</tbl>
<tbl id="tmplib_test2_io">

<fld TMPL_ID="test2" ID="i" NAME="I" NAME_ru="I" NAME_uk="I"
TYPE="4" FLAGS="160" VALUE="" POS="0"/>

<fld TMPL_ID="test2" ID="cnt" NAME="Cnt" NAME_ru="Cnt" NAME_uk="Cnt"
TYPE="4" FLAGS="32" VALUE="" POS="0"/>

</tbl>-->

<node id="mod_LogicLev">
<!--
<tbl id="DAQ">

<fld
ID="test2"
NAME="Test 2"
NAME_ru="Тест 2"
NAME_uk="Тест 2"
DESCR=""
DESCR_ru=""
DESCR_uk=""
ENABLE="1"
START="1"
PRM_BD="test2prm"
PERIOD="1000"

OpenSCADA program description 85

PRIOR="0"/>
</tbl>
<tbl id="test2prm">

<fld SHIFR="test2" NAME="Test 2" NAME_ru="Тест 2" NAME_uk="Тест 2"
DESCR="" DESCR_ru="" DESCR_uk="" EN="1" MODE="2"
PRM="test2.test2"/>

</tbl>-->
</node>

<node id="mod_System">
<!--
<tbl id="DAQ">

<fld
ID="DataOS"
NAME="Data OS"
NAME_ru="Даные ОС"
NAME_uk="Дані ОС"
DESCR="Data of services and subsystems OS."
DESCR_ru="Данные сервисов и подсистем ОС."
DESCR_uk="Дані сервісів та підсистем ОС."
ENABLE="1"
START="1"
AUTO_FILL="0"
PRM_BD="DataOSprm"
PERIOD="1000" PRIOR="0"/>

</tbl>
<tbl id="DataOSprm">

<fld SHIFR="CPU" NAME="CPU load" NAME_ru="Нагрузка CPU"
NAME_uk="Навантаження CPU" DESCR="" DESCR_ru="" DESCR_uk=""
EN="1" TYPE="CPU" SUBT="gen"/>

<fld SHIFR="MEM" NAME="Memory" NAME_ru="Память" NAME_uk="Пам\'ять"
DESCR="" DESCR_ru="" DESCR_uk="" EN="1" TYPE="MEM"/>

</tbl> -->
</node>

<node id="mod_DiamondBoards">
<!--
<tbl id="DAQ">

<fld ID="Athena" NAME="Athena board" NAME_ru="Плата Athena"
NAME_uk="Плата Athena" DESCR="" DESCR_ru="" DESCR_uk=""
ENABLE="1" START="0" BOARD="25" PRM_BD_A="AthenaAnPrm"
PRM_BD_D="AthenaDigPrm" ADDR="640" INT="5" DIO_CFG="0"
ADMODE="0" ADRANGE="0" ADPOLAR="0" ADGAIN="0"
ADCONVRATE="1000"/>

</tbl>
<tbl id="AthenaAnPrm">

<fld SHIFR="ai0" NAME="AI 0" NAME_ru="AI 0" NAME_uk="AI 0"
DESCR="" DESCR_ru="" DESCR_uk=""
EN="0" TYPE="0" CNL="0" GAIN="0"/>

</tbl>
<tbl id="AthenaDigPrm">

<fld SHIFR="di0" NAME="DI 0" NAME_ru="DI 0" NAME_uk="DI 0"
DESCR="" DESCR_ru="" DESCR_uk=""
EN="0" TYPE="0" PORT="0" CNL="0"/>

</tbl> -->
</node>

<node id="mod_BlockCalc">
<!--
<tbl id="DAQ">

<fld ID="Model" NAME="Model" NAME_ru="Модель" NAME_uk="Модель"
DESCR="" DESCR_ru="" DESCR_uk="" ENABLE="1" START="1"
PRM_BD="Model_prm" BLOCK_SH="Model_blcks"
PERIOD="1000" PRIOR="0" PER_DB="0" ITER="1"/>

</tbl>
<tbl id="Model_blcks">

<fld ID="Klap" NAME="Klapan" NAME_ru="Клапан" NAME_uk="Клапан"
DESCR="" DESCR_ru="" DESCR_uk=""
FUNC="DAQ.JavaLikeCalc.lib_techApp.klap" EN="1" PROC="1"/>

</tbl>
<tbl id="Model_blcks_io">

<fld BLK_ID="Klap" ID="l_kl1" TLNK="0" LNK="" VAL="50"/>
<fld BLK_ID="Klap" ID="l_kl2" TLNK="0" LNK="" VAL="20"/>

</tbl>
<tbl id="Model_prm">

<fld SHIFR="l_kl" NAME="Klap lev" NAME_ru="Полож. клапана"
NAME_uk="Полож. клапана" DESCR="" DESCR_ru="" DESCR_uk=""
EN="1" BLK="Klap" IO="l_kl1"/>

</tbl> -->
</node>

<node id="mod_JavaLikeCalc">

OpenSCADA program description 86

<!--
<tbl id="DAQ">

<fld ID="CalcTest" NAME="Calc Test" NAME_ru="Тест вычисл."
NAME_uk="Тест обчисл." DESCR="" DESCR_ru="" DESCR_uk=""
ENABLE="1" START="1" PRM_BD="Cal FUNC="TemplFunc.d_alarm"
PERIOD="1000" PRIOR="0" PER_DB="0" ITER="1"/>

</tbl>
<tbl id="CalcTest_val">

<fld ID="in" VAL="0"/>
<fld ID="alrm" VAL=""/>
<fld ID="alrm_md" VAL="1"/>
<fld ID="alrm_mess" VAL="Error present."/>

</tbl>
<tbl id="CalcTest_prm">

<fld SHIFR="alrm" NAME="Alarm" NAME_ru="Авария" NAME_uk="Аварія"
DESCR="" DESCR_ru="" DESCR_uk="" EN="1" FLD="alrm"/>

</tbl>
<tbl id="lib">

<fld ID="TemplFunc" NAME="" NAME_ru="" NAME_uk="" DESCR="" ESCR_ru=""
DESCR_uk="" DB="lib_TemplFunc"/>

</tbl>
<tbl id="lib_TemplFunc">

<fld ID="d_alarm" NAME="Digit alarm" NAME_ru="Авария по дискр."
NAME_uk="Аварія за дискр" DESCR=""
FORMULA="alrm=(in==alrm_md)?"1:"

+alrm_mess:"0";"/>
</tbl>
<tbl id="lib_TemplFunc_io">

<fld F_ID="d_alarm" ID="in" NAME="Input" NAME_ru="Вход" NAME_uk="Вхід"
TYPE="3" MODE="0" DEF="" HIDE="0" POS="0"/>

<fld F_ID="d_alarm" ID="alrm" NAME="Alarm" NAME_ru="Авария"
NAME_uk="Аварія" TYPE="0" MODE="1" DEF="" HIDE="0" POS="1"/>

<fld F_ID="d_alarm" ID="alrm_md" NAME="Alarm mode"
NAME_ru="Режим аварии" NAME_uk="Режим аварії" TYPE="3"
MODE="0" DEF="" HIDE="0" POS="2"/>

<fld F_ID="d_alarm" ID="alrm_mess" NAME="Alarm message"
NAME_ru="Сообщ. аварии" NAME_uk="Повід. аварії" TYPE="0"
MODE="0" DEF="" HIDE="0" POS="3"/>

</tbl>-->
</node>

<node id="mod_Siemens">
<!--
<tbl id="DAQ">

<fld ID="test2" NAME="Test 2" NAME_ru="Тест 2" NAME_uk="Тест 2"
DESCR="" DESCR_ru="" DESCR_uk="" ENABLE="1" START="1"
PRM_BD="test2prm" PERIOD="1000" PRIOR="0" CIF_DEV="0" ADDR="5"
ASINC_WR="0"/>

</tbl>
<tbl id="test2prm">

<fld SHIFR="test2" NAME="Test 2" NAME_ru="Тест 2" NAME_uk="Тест 2"
DESCR="" DESCR_ru="" DESCR_uk="" EN="1" TMPL="S7.ai_man"/>

</tbl>-->
</node>

<node id="mod_SNMP">
<!--
<tbl id="DAQ">

<fld ID="test2" NAME="Test 2" NAME_ru="Тест 2" NAME_uk="Тест 2"
DESCR="" DESCR_ru="" DESCR_uk="" ENABLE="1" START="1"
PRM_BD="test2prm" PERIOD="1000" PRIOR="0" ADDR="localhost"
COMM="public" PATTR_LIM="20"/>

</tbl>
<tbl id="test2prm">

<fld SHIFR="test2" NAME="Test 2" NAME_ru="Тест 2" NAME_uk="Тест 2"
DESCR="" DESCR_ru="" DESCR_uk="" EN="1" OID_LS="system"/>

</tbl>-->
</node>

<node id="mod_ModBus">
<!--
<tbl id="DAQ">

<fld ID="test2" NAME="Test 2" NAME_ru="Тест 2" NAME_uk="Тест 2"
DESCR="" DESCR_ru="" DESCR_uk="" ENABLE="1" START="1"
PRM_BD="test2prm" PERIOD="1000" PRIOR="0" TRANSP="Sockets"
ADDR="exlar.diya.org" NODE="1"/>

</tbl>
<tbl id="test2prm">

<fld SHIFR="test2" NAME="Test 2" NAME_ru="Тест 2" NAME_uk="Тест 2"
DESCR="" DESCR_ru="" DESCR_uk=""
EN="1" ATTR_LS="321:0:tst:Test"/>

</tbl>-->

OpenSCADA program description 87

</node>

<node id="mod_Transporter">
<!--
<tbl id="DAQ">

<fld ID="test2" NAME="Test 2" NAME_ru="Тест 2" NAME_uk="Тест 2"
DESCR="" DESCR_ru="" DESCR_uk="" ENABLE="1" START="1"
PRM_BD="test2prm" PERIOD="1000" PRIOR="0" SYNCPER="60"
STATIONS="loop" CNTRPRM="System.AutoDA"/>

</tbl>-->
</node>

</node>

<node id="sub_Archive">
<prm id="MessBufSize">1000</prm>
<prm id="MessPeriod">5</prm>
<prm id="ValPeriod">1000</prm>
<prm id="ValPriority">10</prm>
<!--
<tbl id="Archive_mess_proc">

<fld
ID="StatErrors"
MODUL="FSArch"
NAME="Errors"
NAME_ru="Ошибки"
NAME_uk="Помилки"
DESCR="Local errors\' archive"
DESCR_ru="Архив локальных ощибок"
DESCR_uk="Архів локальних помилок"
START="1"
CATEG="/DemoStation*"
LEVEL="4"
ADDR="ARCHIVES/MESS/stError/"
FSArchMSize="300"
FSArchNFiles="10"
FSArchTmSize="30"
FSArchXML="1"
FSArchPackTm="10"
FSArchTm="60"/>

<fld
ID="NetRequsts"
MODUL="FSArch"
NAME="Net requests"
NAME_ru="Сетевые запросы"
NAME_uk="Мережеві запити"
DESCR="Requests to server through transport Sockets."
DESCR_ru="Запросы к серверу через транспорт Sockets."
DESCR_uk="Запити до сервера через транспорт Sockets."
START="1"
CATEG="/DemoStation/Transport/Sockets*"
LEVEL="1"
ADDR="ARCHIVES/MESS/Net/"
FSArchMSize="300"
FSArchNFiles="10"
FSArchTmSize="30"
FSArchXML="1"
FSArchPackTm="10"
FSArchTm="60"/>

</tbl>
<tbl id="Archive_val_proc">

<fld
ID="1h"
MODUL="FSArch"
NAME="1hour"
NAME_ru="1час"
NAME_uk="1год"
DESCR="Averaging for hour"
DESCR_ru="Усреднение за час"
DESCR_uk="Усереднення за годину"
START="1"
ADDR="ARCHIVES/VAL/1h/"
V_PER="360"
A_PER="60"
FSArchTmSize="8640"
FSArchNFiles="10"
FSArchRound="0.1"
FSArchPackTm="10"
FSArchTm="60"/>

</tbl>
<tbl id="Archive_val">

<fld
ID="test1"

OpenSCADA program description 88

NAME="Test 1"
NAME_ru="Тест 1"
NAME_uk="Тест 1"
DESCR="Test 1"
DESCR_ru="Тест 1"
DESCR_uk="Тест 1"
START="1"
VTYPE="1"
BPER="1"
BSIZE="200"
BHGRD="1"
BHRES="0"
SrcMode="0"
Source=""
ArchS=""/>

</tbl>-->
</node>

<node id="sub_Protocol">
</node>

<node id="sub_UI">
<node id="mod_QTStarter">

<prm id="StartMod">QTCfg</prm>
</node>
<node id="mod_WebCfg">

<prm id="SessTimeLife">20</prm>
</node>
<node id="mod_VCAEngine">

<!--
<tbl id="LIB">

<fld ID="test2" NAME="Test 2" NAME_ru="Тест 2" NAME_uk="Тест 2"
DESCR="" DESCR_ru="" DESCR_uk="" DB_TBL="wlib_test2" ICO=""
USER="root" GRP="UI" PERMIT="436"/>

</tbl>
<tbl id="wlib_test2">

<fld ID="test2" ICO="" PARENT="/wlb_originals/wdg_Box" PROC=""
PROC_ru="" PROC_uk="" PROC_PER="-1" USER="root" GRP="UI"
PERMIT="436"/>

</tbl> <tbl id="wlib_test2_io">
<fld IDW="test2" ID="name" IO_VAL="Test 2" IO_VAL_ru="Тест 2"

IO_VAL_uk="Тест 2" SELF_FLG="" CFG_TMPL="" CFG_TMPL_ru=""
CFG_TMPL_uk="" CFG_VAL=""/>

<fld IDW="test2" ID="dscr" IO_VAL="Test module 2"
IO_VAL_ru="Тест модуля 2" IO_VAL_uk="Тест модуля 2"
SELF_FLG="" CFG_TMPL="" CFG_TMPL_ru="" CFG_TMPL_uk=""
CFG_VAL=""/>

</tbl>
<tbl id="PRJ">

<fld ID="test2" NAME="Test 2" NAME_ru="Тест 2" NAME_uk="Тест 2"
DESCR="" DESCR_ru="" DESCR_uk="" DB_TBL="prj_test2" ICO=""
USER="root" GRP="UI" PER </tbl> <tbl id="prj_test2">

<fld OWNER="/test2" ID="pg1" ICO="" PARENT="/wlb_originals/wdg_Box"
PROC="" PROC_ru="" PROC_uk="" PROC_PER="-1" USER="root"
GRP="UI" PERMIT="436" FLGS="1"/>

<fld OWNER="/test2/pg1" ID="pg2" ICO=""
PARENT="/wlb_originals/wdg_Box" PROC="" PROC_ru="" PROC_uk=""
PROC_PER="-1" USER="root" GRP="UI" PERMIT="436" FLGS="0"/>

</tbl>
<tbl id="prj_test2_incl">

<fld IDW="/prj_test2/pg_pg1" ID="wdg1"
PARENT="/wlb_originals/wdg_Box"/>

</tbl>-->
</node>

</node>

<node id="sub_Special">
<node id="mod_SystemTests">

<prm id="PARAM" on="0" per="5" name="LogicLev.experiment.F3"/>
<prm id="XML" on="0" per="10" file="/etc/oscada.xml"/> <prm id="MESS" on="0"

per="10" categ="" arhtor="DBArch.test3"/>
<prm id="SOAttDet" on="0" per="20" name="../../lib/openscada/daq_LogicLev.so"

full="1"/>
<prm id="Val" on="0" per="1" name="LogicLev.experiment.F3.var" arch_len="5"

arch_per="1000000"/>
<prm id="Val" on="0" per="1" name="System.AutoDA.CPULoad.load" arch_len="10"

arch_per="1000000"/>
<prm id="BD" on="0" per="10" type="MySQL"

bd="server.diya.org;roman;123456;oscadaTest"
table="test" size="1000"/>

<prm id="BD" on="0" per="10" type="DBF" bd="./DATA/DBF" table="test.dbf"
size="1000"/>

OpenSCADA program description 89

<prm id="BD" on="0" per="10" type="SQLite" bd="./DATA/test.db" table="test"
size="1000"/>

<prm id="BD" on="0" per="10" type="FireBird"
bd="server.diya.org:/var/tmp/test.fdb;roman;123456"
table="test" size="1000"/>

<prm id="TrOut" on="0" per="1" addr="TCP:127.0.0.1:10001" type="Sockets"
req="time"/>

<prm id="TrOut" on="0" per="1" addr="UDP:127.0.0.1:10001" type="Sockets"
req="time"/>

<prm id="TrOut" on="0" per="1" addr="UNIX:./oscada" type="Sockets"
req="time"/>

<prm id="TrOut" on="0" per="1" addr="UDP:127.0.0.1:daytime" type="Sockets"
req="time"/>

<prm id="Func" on="0" per="10"/> <prm id="SysContrLang" on="0" per="10"
path="/Archive/FSArch/mess_StatErrors/%2fprm%2fst"/>

<prm id="ValBuf" on="0" per="5"/> <prm id="Archive" on="0" per="30"
arch="test1" period="1000000"/>

<prm id="Base64Code" on="0" per="10"/>
</node>

</node>
</station>

</OpenSCADA>

Lets examine in details the structure of the configuration file. A configuration file can contain a
configuration of several stations in the sections <station id="DemoStation"/>. To attribute set the identifier
of the station. Using one or another section of the station at startup is specified by the command-line option
--Station=DemoStation. Section of the station directly contains parameters of the station and subsystems'
sections. Configuration options of the section are written in the form <prm id="StName">Demo
station</prm>. Where in the attribute <id> the ID of the attribute is specified, and in the tag's body the
value of parameter "Demo station" is specified. The list of available options and their description for the
station and all other sections can be obtained from the console by calling OpenSCADA with parameter
--help or in the "Help" tabs of the pages of the components of the configuration files of OpenSCADA
(Fig.4.10a).

OpenSCADA program description 90

Fig. 4.10a. The "Help" tab of the OpenSCADA component.

OpenSCADA program description 91

The result of the command: # ./openscada_demo --help

********** OpenSCADA v0.6.4.1 (Linux-2.6.30-std-def-alt15). *********

===
========================= The general system options ======================
===
-h, --help Info message about system options.
 --Config=<path> Config file path.
 --Station=<id> Station identifier.
 --demon Start into demon mode.
 --MessLev=<level> Process messages <level> (0-7).
 --log=<direct> Direct messages to:

<direct> & 1 - syslogd;
<direct> & 2 - stdout;
<direct> & 4 - stderr;
<direct> & 8 - archive.

----------- The config file station </EmptySt/> parameters -----------
StName <nm> Station name.
WorkDB <Type.Name> Work DB (type and name).
Workdir <path> Work directory.
IcoDir <path> Icons directory.
ModDir <path> Modules directory.
MessLev <level> Messages <level> (0-7).
LogTarget <direction> Direct messages to:

<direct> & 1 - syslogd;
<direct> & 2 - stdout;
<direct> & 4 - stderr;
<direct> & 8 - archive.

Lang2CodeBase <lang> Base language for variable texts translation, two symbols code.
SaveAtExit <true> Save system at exit.
SavePeriod <sec> Save system period.

=================== Subsystem "Module sheduler" options =================
 --ModPath=<path> Modules <path> (/var/os/modules/).
------------ Parameters of section </DemoStation/sub_ModSched/> in config file -----------
ModPath <path> Path to shared libraries(modules).
ModAllow <list> List of shared libraries allowed for automatic loading, attaching and starting

(bd_DBF.so;daq_JavaLikeCalc.so). Use '*' value for allow all modules.
ModDeny <list> List of shared libraries deny for automatic loading, attaching and starting

(bd_DBF.so;daq_JavaLikeCalc.so).
ChkPer <sec> Period of checking at new shared libraries(modules).

========================= Subsystem "DB" options =========================
----------- The config file station </DemoStation/sub_BD/> parameters -----------
SYSStPref <1> Use station id prefix into generic (SYS) table.

====================== Subsystem "Security" options ======================

===================== Subsystem "Transports" options =====================

============ Subsystem "Transport protocols" options =====================

=================== The module <Protocol:HTTP> options =======================
---------- Parameters of the module section </DemoStation/sub_Protocol/mod_HTTP/> in config file ----------
AuthTime <min> Life time of the authentication, minutes (default 10).

=================== Subsystem "Data acquisition" options ================
------------ Parameters of section </DemoStation/sub_DAQ/> in config file -----------
RdStLevel <lev> The curent station redundant level.
RdTaskPer <s> The redundant task call period.
RdRestConnTm <s> Restore connection timeout to dead reserve stations.
RdRestDtTm <hour> Restore data archive depth from a reserve station after deadline.
RdStList <list> Redundant stations list, separated symbol ';' (st1;st2).

======================== Subsystem "Archives" options ===================
------------ Parameters of section </DemoStation/sub_Archive/> in config file -----------
MessBufSize <items> Messages buffer size.
MessPeriod <sec> Message arhiving period.
ValPeriod <msec> Values arhiving period.
ValPriority <level> Values task priority level.
MaxReqMess <items> Maximum request messages.
MaxReqVals <items> Maximum request values.

======================= Subsystem "Special" options ======================

====================== The module <Special:SystemTests> options =======================
---------- Parameters of the module section </DemoStation/sub_Special/mod_SystemTests/> in config file

All tests main options:
 id test's id;

OpenSCADA program description 92

 on on test's flag;
 per repeat period (sek).
 *** Test's options ***
1) Param DAQ parameters test. Make read a parameter's attributes and config fields.
 1:name DAQ parameter address
2) XML XML file parsing test. Parse and show selected file structure.
 1:file XML file
3) Mess Messages archive test. Periodic read new messages from archive, for selected archivator.
 1:arhtor Archivator
 2:categ Messages category pattern
 3:depth Messages depth (s)
4) SOAttach Attach/detach module test.
 1:name Path to module
 2:mode Mode (1-attach;-1-detach;0-change)
 3:full Full attach(to start)
5) Val Parameter attribute's value test.
Periodic make gathering for last value of selected attribute, and also gathering from archive for selected

depth.
 1:name Parameter attribute path
 2:arch_len Archive value getting depth (s)
 3:arch_per Archive value getting period (us)
6) DB Full database test. Make:
 - make/open DB;
 - make/open table;
 - make multiply records for determined structure;
 - modify multiply records;
 - get and check values for multiply records;
 - modify record and table structure;
 - remove multiply records;
 - close/remove table;
 - close/remove DB.
 1:type DB type
 2:addr DB address
 3:table DB table
 4:size Records number
7) TrOut Output and/or input transports test.
Make test for output transport by send the request to selected input transport.
 1:addr Address
 2:type Transport module
 3:req Request text
8) SysContrLang System control language test.
Make request to language elements by full path set.
Full path to language element have view </Archive/%2fbd%2fm_per>.
Full path contained two included path.
First </d_Archive/> is path to the node of the control tree.
Second </bd/m_per> is path to concrete node's element.
 1:path Path to language element
9) ValBuf Value buffer tests.
Contain 13 tests for all aspects of value buffer (subsystem "Archives").
10) Archive Value archive allocation tests.
Contain 7(8) tests for value archivator for check to correct working the consecutive pack mechanism.
 1:arch Value archive
 2:period Values period (us)
11) Base64Code Mime Base64 encoding algorithm tests.

===================== Subsystem "User interfaces" options ===================
=================== The module <UI:Vision> options =======================
---------- Parameters of the module section </DemoStation/sub_UI/mod_Vision/> in config file ----------
StartUser <user> No password requested start user.
RunPrjs <list> Run projects list on the module start.
RunTimeUpdt <mode> RunTime update mode (0 - all widgets periodic adaptive update, 1 - update only

changed widgets).
VCAstation <id> VCA station id ('.' - local).

======================= The module <UI:VCAEngine> options =======================
 --VCADBClearForce Force clear VCA DB from data of API 1.

======================= The module <UI:QTCfg> options =======================
---------- Parameters of the module section </DemoStation/sub_UI/mod_QTCfg/> in config file ----------
StartPath <path> Configurator start path.
StartUser <user> No password requested start user.

======================= The module <UI:QTStarter> options =======================
---------- Parameters of the module section </DemoStation/sub_UI/mod_QTStarter/> in config file ----------
StartMod <moduls> Start modules list (sep - ';').

======================= The module <UI:WebVision> options =======================
---------- Parameters of the module section </DemoStation/sub_UI/mod_WebVision/> in config file ----------
SessTimeLife <time> Time of the session life, minutes (default 10).

OpenSCADA program description 93

Sections of subsystem (<node id="sub_DAQ" />) contains parameters of subsystem, sections of
modules and sections of tables of reflections of the data of databases in the configuration file. Sections of
modules (<node id="mod_DiamondBoards" />) contain the individual parameters of modules and sections
of tables of reflection of the data of databases in the configuration file.

Sections of the tables of reflection of the data of databases are provided for placement in the
configuration file records of DB tables for the OpenSCADA components. Lets examine the table of
incoming transports "Transport_in" of subsystem transports (<node id="sub_Transport">) from the
example of configuration file above. The table contains two records with fields: ID, MODULE, NAME,
DESCRIPT, ADDR, PROT, START. After booting with this section and in general without the DB in the
subsystem "Transports" of the "Sockets" module you'll see two input transports. Formats of the table's
structures of the main components are included in the demo configuration files. For the details of the
database's structure you should read the relevant documentation of modules.

OpenSCADA program description 94

 5. System-wide API of user programming.
User programming API is the tree of OpenSCADA objects, every object of which can provide own list

of properties and functions. Properties and functions of objects can be used by the user in procedures on the
languages of user programming of OpenSCADA. The entry point for access to the objects of system
OpenSCADA from user programming language JavaLikeCalc is the reserved word "SYS" of the root
OpenSCADA object. For example, to access the function of outgoing transport you should write:
SYS.Transport.Serial.out_ModBus.messIO(mess);.

API of the objects provided by the modules is described in the own documentation of the module.

 5.1. System-wide user objects.

Abstract object is an associative container of properties and functions. Properties can contain the data of
four basic types and other objects. Access to the properties of an object is usually made by recording the
names of properties through a point to the object <obj.prop>, as well as by entering the property name in
brackets <obj["prop"]>. It is obvious that the first mechanism is static, while the second lets you to specify
the name of the property through a variable. The basic definition of the object does not contain functions.
Copying of an object actually makes reference to the original object. When you delete an object the reduce
of the reference counter is made, and when the reference counter is equal to the zero object is removed
physically.

Different components can redefine the basic object with special properties and functions. The standard
extension of the object is an array "Array".

Array object

Peculiarity of the array is that it works with the properties like with the indexes, and complete their
naming if senseless, and hence the mechanism of addressing is available only by the conclusion of the
index in square brackets <arr[1]>. Array stores the properties in its own container of one-dimensional
array. Digital properties of the array are used to access directly to the array, and the characters work as
object properties.

Array provides the special property "length" to get the array size <var = arr.length;>. Also array
provides the following functions:

• string join(string sep = ","), string toString(string sep = ","), string valueOf(string sep = ",")
— Returns the string with the array elements separated by <sep> or the character ','.
• Array concat(Array arr); — Adds to the initial array the elements of the <arr> array. Returns
the initial array with changes.
• int push(ElTp var, ...); — Places the element(s) <var> to the end of the array, as to the stack.
Returns the new array size.
• ElTp pop(); — Deleting of the last element of the array and return of its value, as from the stack.
• Array reverse(); — Changing the order of the elements of the array. Returns the initial array
with changes.
• ElTp shift(); — The shift of the array to the top. The first element is removed and its value is
returned.
• int unshift(ElTp var, ...); — Shift element(s) <var> to the array. The first element to the 0,
second to the 1 and so on.
• Array slice(int beg, int end); — Returns an array fragment from <beg> to <end> (exclude). If
the value of beginning or end is negative, then the count is made from the end of the array. If the end
is not specified, then the end is the end of the array.
• Array splice(int beg, int remN, ElTp val1, ElTp val2, ...); — Inserts, deletes or replaces the
elements of the array. Returns the removed elements array. Firstly it is made the removing of
elements from the position <beg> and in the quantity of <remN>, and then the values <val1> are
inserted and so on, beginning from the position <beg>.
• Array sort(); — Sort array elements in lexicographical order.

OpenSCADA program description 95

RegExp object

Object for work with regular expressions, based on the library PCRE. In the global search set object
attribute "lastIndex", which allows you to continue searching for the next function call. In the case of an
unsuccessful search for the attribute "lastIndex" reset to zero.

As arguments passed to create the object put string with the text of regular expression and flags as a
string of characters:

• 'g' — global match mode;
• 'i' — case insensitive match mode;
• 'm' — multi-line match mode;
• 'p' — expressions test by typical template with key symbols: '?', '*' and '\'.

Object's properties:
• source — Original regular expression pattern, read-only.
• global — Global match flag, read-only.
• ignoreCase — Ignore case flag, read-only.
• multiline — Multiline search, read-only.
• lastIndex — Index of a character of the substring from the last search. Used in global mode for
match continue, at next call.

Object's functions:
• Array exec(string val); — Call match for string <val>. Return found substring (0) and
subexpressions (>0) in array. Set attribute "index" of the array to matched substring position. Set
attribute "input" of array to source string.

var re = new RegExp("(\\d\\d)[-/](\\d\\d)[-/](\\d\\d(?:\\d\\d)?)","");
var rez = re.exec("12/30/1969");
var month = rez[1];
var day = rez[2];
var year = rez[3];

• bool test(string val); — Return "true" for match substring in <val>.
var re = new RegExp("(\\d\\d)[-/](\\d\\d)[-/](\\d\\d(?:\\d\\d)?)","");
var OK = re.test("12/30/1969");

XMLNodeObj object

Functions:
• string name() — The name of the node, XML-tag.
• string text() — The text of the node, contents of the XML-tag.
• string attr(string id) — The value of the node's attribute <id>.
• XMLNodeObj setName(string vl) — Setting of the node's name to <vl>. Returns the current
node.
• XMLNodeObj setText(string vl) — Setting of the node's text to <vl>. Returns the current node.
• XMLNodeObj setAttr(string id, string vl) — Setting the attribute <id> to the value <vl>.
Returns the current node.
• int childSize() — Quantity of the embedded nodes.
• XMLNodeObj childAdd(ElTp no = XMLNodeObj); XMLNodeObj childAdd(string no) —
Addition of the object <no> as the embedded one. <no> may be the direct object-result of the
function SYS.XMLNode(), and the string with the name of the new tag. Returns the embedded node.
• XMLNodeObj childIns(int id, ElTp no = XMLNodeObj); XMLNodeObj childIns(int id, string
no) — Insert of the object <no> as the embedded one to the position <id>. <no> may be the direct
object-result of the function SYS.XMLNode(), and the string with the name of the new tag. Returns
the embedded node.
• XMLNodeObj childDel(int id) — Deleting the embedded node from the position <id>. Returns
the current node.
• XMLNodeObj childGet(int id) — Getting the embedded node in the position <id>.
• XMLNodeObj parent() — Get parent node.
• string load(string str, bool file = false, bool full = false, string cp = "UTF-8") — Loading the
XML from the string <str> or from the file with the path in <str> if the <file> "true", with source
encoding <cp>. <full> — for full loading, with texts and comments blocks into special nodes.

OpenSCADA program description 96

• string save(int opt = 0, string path = "", string cp = "UTF-8") — Saving the XML tree to the
string or to the file <path> with the formatting parameter <opt> and target encoding <cp>. Returns
the XML text or the error code. The following formatting options <opt> are provided:

• 0x01 — interrupt the string before the opening tag;
• 0x02 — interrupt the string after the opening tag;
• 0x04 — interrupt the string after a closing tag;
• 0x08 — interrupt the string after the text;
• 0x10 — interrupt the string after the instruction;
• 0x1E — interrupt the string after all;
• 0x20 — insert standard XML-header;
• 0x40 — insert standard XHTML-header.

• XMLNodeObj getElementBy(string val, string attr = "id") — get element from the tree by
attribute <attr> value <val>.

 5.2. System (SYS)

Object functions:
• string system(string cmd, bool noPipe = false); — calls the console commands <cmd> of OS
returning the result by the channel. If <noPipe> is set the return code is returned the the execution
of the programs in the background ("sleep 5 &") is possible. The function offers great opportunities
to the OpenSCADA user by calling any system software, utilities and scripts, as well as by way of
access to the huge volume of system data. For example the command "ls-l" returns the detailed
contents of the working directory.
• string fileRead(string file); — Return <file> content by string.
• int fileWrite(string file, string str, bool append = false); — Write <str> to <file>, remove
presented or <append>. Return wrote bytes count.
• int message(string cat, int level, string mess); — formation of the system message <mess> with
the category <cat>, level <level> (-7...7). The negative value of the level forms the alarms (Alarm).
• int messDebug(string cat, string mess); int messInfo(string cat, string mess); int
messNote(string cat, string mess); int messWarning(string cat, string mess); int messErr(string
cat, string mess); int messCrit(string cat, string mess); int messAlert(string cat, string mess); int
messEmerg(string cat, string mess); — formation of the system message <mess> with the category
<cat> and the appropriate level.
• XMLNodeObj XMLNode(string name = ""); — creation of the XML node object with the name
<name>.
• string cntrReq(XMLNodeObj req, string stat = ""); — request of the control interface to the
system via XML. The usual request is written as <get path="/OPath/%2felem"/>. If the station is
indicated to the request to the external station is made.

//Get the station identifier
req = SYS.XMLNode("get").setAttr("path","/%2fgen%2fid");
SYS.cntrReq(req);
idSt = req.text();

• string sleep(int tm, int ntm = 0); — put to sleep the execution thread on the <tm> seconds and
<ntm> ns. The function is added only for completeness and is not highly recommended for use,
especially in the procedures of the user interface because it will freeze the interface.
• int time(int usec); — returns the absolute time in seconds from the epoch of 1/1/1970 and in
microseconds, if <usec> is specified.
• int localtime(int fullsec, int sec, int min, int hour, int mday, int month, int year, int wday, int
yday, int isdst); — returns the full date in seconds (sec), minutes (min), hours (hour), days of the
month (mday), month (month), year (year), days in the week (wday), days in the year (yday) and
sign of summer time (isdst), based on the absolute time in seconds <fullsec> from the epoch
1.1.1970.
• string strftime(int sec, string form = "%Y-%m-%d %H:%M:%S"); — Converts an absolute time
<sec> to the string of the desired format <form>. Record of the format corresponds to the POSIX-
function strftime.

OpenSCADA program description 97

• int strptime(string str, string form = "%Y-%m-%d %H:%M:%S"); — Returns the time in
seconds from the epoch of 1/1/1970, based on the string record of time <str>, in accordance with
the specified template <form>. For example the template "%Y-%m-%d %H:%M:%S" corresponds
with the time "2006-08-08 11:21:55". Description of the template's format can be obtained from the
documentation on POSIX-function "strptime".
• int cron(string cronreq, int base = 0); — returns the time, planned in the format of the standard
Cron <cronreq>, beginning from basic time <base> or from the current, if the basic is not
specified.
• string strFromCharCode(int char1, int char2, int char3, ...); — String creation from symbol's
codes char1, char2 ... charN.
• string strCodeConv(string src, string fromCP, string toCP); — Encoding the text <src> from
the encoding <fromCP> to <toCP>. If encoding is omitted, it is used inside.

 5.3. Any object (TCntrNode) of OpenSCADA objects tree (SYS.*)

Object functions:
• TArrayObj nodeList(string grp = "", string path = ""); — Get child nodes list for group <grp>
and node from path <path>. If <grp> empty then return nodes for all groups.
• TCntrNodeObj nodeAt(string path, string sep=""); — Attach to node <path> into OpenSCADA
objects tree. If a separator set into <sep> then path process as separated string.
• TCntrNodeObj nodePrev(); — Get previous, parent, node.
• string nodePath(string sep = "", bool from_root = true); — Getting the path of the current node
in the object tree OpenSCADA. One separator character is specified in <sep> to get the path
through the separator, for example, "DAQ.ModBus.PLC1.P1.var", otherwise
"/DAQ/ModBus/PLC1/P1/var". <from_root> indicates a need to form a path from the root, and
without the Station ID.

 5.4. "Security" subsystem (SYS.Security)

The subsystem object's functions (SYS.Security):
• int access(string user, int mode, string owner, string group, int access) — Check for <user>
access to resource what owned by <owner> and <group> and <access> for <mode>:

user — user for access check;
mode — access mode (4-R, 2-W, 1-X);
owner — resource owner;
group — resource group;
access — resource access mode (RWXRWXRWX — 0777).

The user (SYS.Security["usr_User"]) or group (SYS.Security["grp_Group"]) object's functions:
• ElTp cfg(string nm) — get value of configuration field <nm> of the object.
• ElTp cfgSet(string nm, ElTp val) — set configuration field <nm> of the object to value <val>.

 5.5. "DB" subsystem (SYS.BD)

DB object functions (SYS.BD["TypeDB"]["DB"]):
• ElTp cfg(string nm) — get value of configuration field <nm> of the object.
• ElTp cfgSet(string nm, ElTp val) — set configuration field <nm> of the object to value <val>.
• Array SQLReq(string req); — Formation of the SQL-request to the DB.

DBTbl=SYS.BD.MySQL.GenDB.SQLReq("SELECT * from DB;");
for(var i_rw = 0; i_rw < DBTbl.length; i_rw++)
{
 var rec = "";
 for(var i_fld = 0; i_fld < DBTbl[i_rw].length; i_fld++)
 rec += DBTbl[i_rw][i_fld]+"\t";
 SYS.messDebug("TEST DB","Row "+i_rw+": "+rec);
 //> Get column value by name
 if(i_rw) SYS.messDebug("TEST DB: ","Row "+i_rw+": 'NAME'"+DBTbl[i_rw]

OpenSCADA program description 98

["NAME"]);
}

Table object functions (SYS.BD["TypeDB"]["DB"]["Table"]):
• XMLNodeObj fieldStruct(); — The table structure get in XML-node "field" with child node-
columns <RowId type="real" len="10.2" key="1" def="Default value">{Value}</RowId>,
wher:

• {RowId} — column identifier;
• {Value} — column value;
• type — value's type for column: str — string, int — integer, real — real and bool —
boolean;
• len — value's length for column, in chars;
• key — the flag for key-column, and used for search by it value;
• def — default value for column.

• string fieldSeek(int row, XMLNodeObj fld); — Seek field <row> of table. For success returned
"1" else "0". On error case returned "0:Error".
• string fieldGet(XMLNodeObj fld); — Field value request. On error case returned "0:Error".

req = SYS.XMLNode("field");
req.childAdd("user").setAttr("type","str").setAttr("key","1").setText("root
");
req.childAdd("id").setAttr("type","str").setAttr("key","1").setText("/Lang2
CodeBase");
req.childAdd("val").setAttr("type","str");
SYS.BD.MySQL.GenDB.SYS.fieldGet(req);
SYS.messDebug("TEST DB","Value: "+req.childGet(2).text());

• string fieldSet(XMLNodeObj fld); — Field set. On error case returned "0:Error".
• string fieldDel(XMLNodeObj fld); — Field remove. On error case returned "0:Error".

 5.6. Subsystem "DAQ" (SYS.DAQ)

Functions of subsystem's object (SYS.DAQ):
• bool funcCall(string progLang, TVarObj args, string prog); — call function text <prog> whith
arguments <args> for programm language <progLang>. Return "true" on well call.

var args = new Object();
args.y = 0;
args.x = 123;
SYS.DAQ.funcCall("JavaLikeCalc.JavaScript",args,"y=2*x;");
SYS.messDebug("TEST Calc","TEST Calc rezult: "+args.y);

Functions of object of controller (SYS.DAQ["Modul"]["Controller"]):
• ElTp cfg(string nm) — get value of configuration field <nm> of the object.
• ElTp cfgSet(string nm, ElTp val) — set configuration field <nm> of the object to value <val>.
• string name() — controller name.
• string descr() — controller description.
• string status() — controller status.
• bool alarmSet(string mess, int lev = -5, string prm = "") — set/remove of violations <mess>
with the level <lev> (negative for remove otherwise for set), for the parameter <prm>. The function
forming alarm with category: al{ModId}:{CntrId}[.{PrmId}], where:

• ModId — the module identifier;
• CntrId — the controller identifier;
• PrmId — parameter identifier, from argument <prm>.

• bool enable(bool newSt = EVAL) — get enable status or change it by argument <newSt> assign.
• bool start(bool newSt = EVAL) — get start status or change it by argument "<newSt>" assign.

Functions of object of controller's parameter (SYS.DAQ["Modul"]["Controller"]["Parameter"]):
• ElTp cfg(string nm) — get value of configuration field <nm> of the object.
• ElTp cfgSet(string nm, ElTp val) — set configuration field <nm> of the object to value <val>.

OpenSCADA program description 99

Functions of object of atribute of controller's parameter (SYS.DAQ["Modul"]["Controller"]
["Parameter"]["Attribute"]):

• ElTp get(int tm = 0, int utm = 0, bool sys = false); — get attribute value at time <tm:utm> and
system access flag <sys>.
• bool set(ElTp val, int tm = 0, int utm = 0, bool sys = false); — write value <val> to attribute
with time label <tm:utm> and system access flag <sys>.
• TCntrNodeObj arch(); — gets the archive associated with this attribute. In case of absence the
associated archive returns "false".
• string descr(); — get attribute description.
• int time(int utm); — last attribute's value time in seconds and microseconds in <utm>.
• int len(); — field length.
• int dec(); — float resolution.
• int flg(); — field's flags.
• string def(); — default value.
• string values(); — allowed values list or range.
• string selNames(); — names of allowed values list.
• string reserve(); — reserve string property value.

Functions of object of templates library (SYS.DAQ[tmplb_Lib"]) and template (SYS.DAQ[tmplb_Lib"]
["Tmpl"]) of controller's parameter:

• ElTp cfg(string nm) — get value of configuration field <nm> of the object.
• ElTp cfgSet(string nm, ElTp val) — set configuration field <nm> of the object to value <val>.

 5.6.1. The module DAQ.JavaLikeCalc

The object "Functions library" (SYS.DAQ.JavaLikeCalc["lib_Lfunc"])
• ElTp {funcID}(ElTp prm1, ...) — call the library function {funcID}. Return result of the called
function.

The object "User function" (SYS.DAQ.JavaLikeCalc["lib_Lfunc"]["func"])
• ElTp call(ElTp prm1, ...) — call the function with parameters <prm{N}>. Return result of the
called function.

 5.6.2. The module DAQ.ModBus

The object "Controller" (this.nodePrev())
• string messIO(string pdu) — sending PDU <pdu> through the transport of controller object by
means of ModBus protocol. PDU query result is placed instead of the query <pdu>, and the error
returned by the function.

 5.7. "Archives" subsystem (SYS.Archive)

Functions of the subsystem's object:
• Array messGet(int btm, int etm, string cat = "", int lev = 0, string arch = ""); — request of the
system messages for the time from <btm> to <etm> for the category <cat>, level <lev> and
archiver <arch>. Return array of the message's objects whith preset attributes:

• tm — time of the message, seconds;
• utm — time of the message, microseconds;
• categ — category of the message;
• level — level of the message;
• mess — text of the message.

• bool messPut(int tm, int utm, string cat, int lev, string mess); — write message <mess> with
category <cat>, level <lev> (-7...7) and time <tm>.<utm> to archive or/and allarms list.

Functions of object's archivator of messages (SYS.Archive["mod_Modul"]["mess_Archivator"]):
• ElTp cfg(string nm) — get value of configuration field <nm> of the object.
• ElTp cfgSet(string nm, ElTp val) — set configuration field <nm> of the object to value <val>.
• bool status() — get archivator status.

OpenSCADA program description 100

http://wiki.oscada.org/HomePageEn/Doc/ModBus?v=761
http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc?v=1b5x

• int end() — get archivator data end time.
• int begin() — get archivator data begin time.

Functions of object's archive (SYS.Archive["va_Archive"]) and archivator of values
(SYS.Archive["val_Modul"]["val_Archivator"]):

• ElTp cfg(string nm) — get value of configuration field <nm> of the object.
• ElTp cfgSet(string nm, ElTp val) — set configuration field <nm> of the object to value <val>.

 5.8. "Transports" subsystem (SYS.Transport)

Functions of the ingoing transport object (SYS.Transport["Modul"]["in_Transp"]):
• ElTp cfg(string nm) — get value of configuration field <nm> of the object.
• ElTp cfgSet(string nm, ElTp val) — set configuration field <nm> of the object to value <val>.

Functions of the outgoing transport object (SYS.Transport["Modul"]["out_Transp"]):
• ElTp cfg(string nm) — get value of configuration field <nm> of the object.
• ElTp cfgSet(string nm, ElTp val) — set configuration field <nm> of the object to value <val>.
• string messIO(string mess, real timeOut = 0); — sending the message <mess> through the
transport with the waiting timeout <timeOut> (in seconds). In the case of a zero timeout is the time
taken from the settings of outgoing transport.

rez=SYS.Transport.Serial.out_ttyUSB0.messIO(SYS.strFromCharCode(0x4B,0x00,0
x37,0x40),0.2);
while(true)
{
 trez = SYS.Transport.Serial.out_ttyUSB0.messIO("");
 if(!trez.length) break;
 rez+=trez;
}

• int messIO(XMLNodeObj req, string prt); — sending the request <req> to the protocol <prt>
for the implementation of a connection session through the transport by means of protocol.

req = SYS.XMLNode("TCP");
req.setAttr("id","test").setAttr("reqTm",500).setAttr("node",1).setAttr("req
Try",2).setText(SYS.strFromCharCode(0x03,0x00,0x00,0x00,0x05));
SYS.Transport.Sockets.out_testModBus.messIO(req,"ModBus");
test = Special.FLibSYS.strDec4Bin(req.text());

 5.9. "User interfaces" subsystem (SYS.UI)

 5.9.1. The module UI.VCAEngine

Object "Session" (this.ownerSess())
• string user() — The session user.
• string alrmSndPlay() — The widget's path for that on this time played the alarm message.
• int alrmQuittance(int quit_tmpl, string wpath = "") — alarm quittance <wpath> with template
<quit_tmpl>. If <wpath> is empty string then make global quittance.

Object "Widget" (this)
• TCntrNodeObj ownerSess() — the object-session is getting for current widget.
• TCntrNodeObj ownerPage() — the parent object-page is getting for current widget.
• TCntrNodeObj ownerWdg(bool base = false) — the parent object-widget is getting for current
widget. If set <base> then will include return the parent object-page.
• TCntrNodeObj wdgAdd(string wid, string wname, string parent) — add new widget <wid> with
name <wname> and based at library widget <parent>.

//New widget add, which based at text primitive
nw = this.wdgAdd("nw", "New widget", "/wlb_originals/wdg_Text");
nw.attrSet("geomX", 50).attrSet("geomY", 50);

• bool wdgDel(string wid) — delete widget <wid>.
• TCntrNodeObj wdgAt(string wid, bool byPath = false) — attach to child or global, by <byPath>,
widget. In the case of global connection, you can use absolute or relative path to the widget. For
starting point of the absolute address acts the root object of module "VCAEngine", which means the

OpenSCADA program description 101

http://wiki.oscada.org/HomePageEn/Doc/VCAEngine?v=1b0u

first element of the absolute address is session identifier, which is omitted. The relative address
takes the countdown from the current widget. Special element of relative address is an element of
parent node "..".
• bool attrPresent(string attr) — the attribute <attr> of widget checking to allow fact.
• ElTp attr(string attr) — the attribute <attr> of widget value getting. For disallow attributes will
return empty string.
• TCntrNodeObj attrSet(string attr, ElTp vl) — the attribute <attr> of widget value setting to
<vl>. The object is returned for the function concatenation.
• string link(string attr, bool prm = false) — link return for widget's attribute <attr>. At set
<prm> requested link for attributes block (parameter), represented by the attribute.
• string linkSet(string attr, string vl, bool prm) — set link for widget's attribute <attr>. At set
<prm> made set link for attributes block (parameter), represented by the attribute.

//Set link for eight trend to parameter
this.linkSet("el8.name", "prm:/LogicLev/experiment/Pi", true);

Object "Widget", of primitive "Document" (this)
• string getArhDoc(integer nDoc) — get archive document text to "nDoc" (0-{aSize-1}) depth.

 5.10. "Special" subsystem (SYS.Special)

 5.10.1. Module Special.FLibSYS

The object "Functions library" (SYS.Special.FLibMath)
• ElTp {funcID}(ElTp prm1, ...) — call the library function {funcID}. Return result of the called
function.

The object "User function" (SYS.Special.FLibMath["funcID"])
• ElTp call(ElTp prm1, ...) — call the function with parameters <prm{N}>. Return result of the
called function.

 5.10.2. Module Special.FLibMath

The object "Functions library" (SYS.Special.FLibMath)
• ElTp {funcID}(ElTp prm1, ...) — call the library function {funcID}. Return result of the called
function.

The object "User function" (SYS.Special.FLibMath["funcID"])
• ElTp call(ElTp prm1, ...) — call the function with parameters <prm{N}>. Return result of the
called function.

 5.10.3. Module Special.FLibComplex1

The object "Functions library" (SYS.Special.FLibComplex1)
• ElTp {funcID}(ElTp prm1, ...) — call the library function {funcID}. Return result of the called
function.

The object "User function" (SYS.Special.FLibComplex1["funcID"])
• ElTp call(ElTp prm1, ...) — call the function with parameters <prm{N}>.
Return result of the called function.

OpenSCADA program description 102

http://wiki.oscada.org/HomePageEn/Doc/FLibComplex1?v=7zo
http://wiki.oscada.org/HomePageEn/Doc/FLibMath?v=d6d
http://wiki.oscada.org/HomePageEn/Doc/FLibSYS?v=yhj

Data acquisition in OpenSCADA
Data acquisition of the SCADA (Supervisory Control and Data Acquisition)-system is its integral part,

which get data from sources of different type. The nature of data, which operates SCADA, is characterized
by signals of basic value's types (integer, real, boolean and string). The signals vary over time and has their
history, life. In the theory of technological processes (TP) under the signal it is meant the value of TP
sensor in the ADC code, "raw" signal or in the real value. Signals can be combined into groups, which are
often called parameters. For example, the developed data sources can provide the structures of parameters
with the predefined set of related signals. In addition to the direct data acquisition in the function of this
mechanism is also included the transfer of actions to control devices of TP; usually it is a gate valve, pumps
and control valves. Taken together, this process is known as computer-process interface (CPI).

Sources of data are characterized by their great variety, which can be divided into three groups.
• Sources of "raw" data, providing the ADC code or levels of discrete signals, and also the sources
which include simple processing. Usually, it is the modules of the allocated CPI or the simplest
industrial programmable logic controllers (PLCs).
• Powerful industrial PLCs, which have significant computing power and the possibility of
formation of complex parameters with different structure.
• Local or related data sources. For example, the CPI as expansion cards, and also the data of the
hardware and software environment in which the system operates.

The variety of data sources has created a wide range of mechanisms to access them. Local data sources
are different in application programming interface (API), and network sources, in their turn, in transport
and protocol interaction level. In general, this has led to the fact that the addition of support for a new data
source requires the creation of interface module or driver. Taking into account the great variety of sources,
it is extremely expensive and actually impossible to cover the entire spectrum of the market of these
devices. The situation is somewhat simplified with the network source due to the presence of the number of
standard and free interaction protocols, but many sources still use their own protocols: private, commercial
or protocols, tied to private mechanisms of the limited range of commercial operating systems (OS).

In terms of OpenSCADA system the following objects to serve the data acquisition mechanism are
provided:

• Attribute - object of reflection of the signal data, it includes the current value with the type of
signal and the history of changes of value;
• Parameter - object of the attributes' (signals') group with the structure corresponding to the
characteristics of the separate data source;
• Controller - object of the separate data device. Typically, this is a separate CPI module or the
devices of industrial PLC.

To account the features of different data acquisition devices, as well as the different mechanisms of
interaction in the OpenSCADA the modular subsystem "Data acquisition" is provided. The module of the
subsystem is the driver for interfacing with a data source of specific type. Each module can contain a
configuration of several devices of this type in the form of "Controller" objects of OpenSCADA. The
general scheme of objects of "Data acquisition" subsystem is shown in Figure 1.

Data acquisition in OpenSCADA 103

Fig. 1. The subsystem's "Data acquisition" scheme.

 1. Data acquisition methods
Taking into account variety of the data sources, and also the ways of their possible interaction data

acquisition methods can be divided to simple synchronous, simple asynchronous, package and passive ones.

To the examination of the mechanisms below the following objects will be involved:
• ObjectSCADA - any object of the SCADA-system, applying for the signal value, for example,
archives and visualizers;
• DAQParamAttribute - attribute of the parameter of subsystem "Data acquisition" which is an
intermediary for access to the value of the signal of data source;
• DAQParamAttributeArch - attribute's archive object;
• HardwarePLC - data source object, for example, modules of the allocated CPI or industrial PLC.

 1.1. Simple synchronous acquisition mechanism

The mechanism is characterized by requests to the data source synchronously with the request to the
attribute of parameter (Fig. 2). This mechanism is usually used when working with local sources of data,
characterized by low latency, ie delay in response to the request. With this method you can get actual data
directly with the request, but the time of the request of object will include the time for transportation and
processing of the request by the data source.

Fig. 2. Diagram of the sequence of interaction with the synchronous requests.

In accordance with the diagram above, we obtain the following sequence of requests for data acquisition
and their transfer:

Data acquisition in OpenSCADA 104

• object of the SCADA-system sends the value request to the object of attribute of the parameter
DAQParamAttribute::getVal();
• object of the attribute of parameter, receiving the request, sends it to the data source
HardwarePLC::valueRequest();
• source of data after processing the request returns the result;
• object of the attribute of parameter, receiving the result, returns its to the SCADA-system object.

In OpenSCADA this mechanism is implemented by the following modules of subsystem "Data
acquisition".

• ModBus - module of access to data of the sources through the family of ModBus protocols. In the
module the synchronous mode for recording data is implemented.
• DiamondBoards - module of the data access to the PC/104 card of Diamond Systems company.
PC/104 boards are available on the ISA-bus, hence are local and available relatively quickly. When
data acquisition is made not by interruption the access to the values of the ADC is synchronous.
Recording mode of the DAC values always works synchronously.
• DAQGate - module of the reflection of the controller's objects of the remote OpenSCADA-
stations on the local one. In the module the synchronous mode for recording data is implemented.
• BlockCalc - calculator in the language of block diagrams. The source of data for it is the custom
block diagram. Attributes of parameters of the module synchronously address the inputs/outputs of
the blocks of block scheme.
• JavaLikeCalc - calculator on the Java-like high level language. The source of data it supports is
the user program on the Java-like language. Attributes of the parameter of module synchronously
address the inputs/outputs of the user computing function.
• LogicLev - module of the logic-level parameters of data acquisition, see more about it in section
2. The source of data for this module are the other parameters of subsystem "Data acquisition" and
the execution context of the parameters' template. Attributes of the parameters of module
synchronously address the attributes of other parameters in the reflective mode of parameters of
subsystem "Data acquisition", or the inputs/outputs of the execution context of the template when
work under the template.

 1.2. Simple asynchronous acquisition mechanism

The mechanism is characterized by requests to the data source, regardless of the request to the attribute
of parameter (Fig. 3). Usually, requests to the source of the data are made periodically in the own inquiry
task of the single controller and with the blocks of few signals. This request to the parameter's attribute
returns the value obtained from the last connection session with the data source. This mechanism is usually
used when working with remote (network) data sources, characterized by high latency, ie delay in the
response to the request.

With this method it is possible to optimize the time resource spent on one signal, and thereby increase
the maximum number of requested signals during the time interval of the inquiry.

As an example, lets examine an industrial PLC Siemens S7-315 during requesting him on the bus
Profibus (1,5 Mbit/s). The average processing time of the MPI-request of this controller is 30 ms. If you use
a synchronous mechanism for each signal, ie one request for each signal, then in one second we can get
something about 33 signals. And if you apply an asynchronous mechanism, ie in the MPI-package to
receive up to 220 bytes or 110 signals of integer type of 16-bit, then we can for one second get up to the
3630 signals. As you can see, the effectiveness of asynchronous mechanism in this case is 110 times,
namely, the maximum capacity of MPI-package.

The disadvantage of asynchronous mechanism is that the request of the value of attribute of the
parameter returns not actual at the time of request value, but value of the last session of the inquiry of the
controller. However, taking into account that the source of data can be updated at intervals of ADC
hardware limitations, and the sensors themselves may have certain restrictions on the reaction rate, the
using of an asynchronous acquisition mechanism could have a serious grounds.

Application of asynchronous mechanism for recording the values to the PLC is a fairly rare fact, because
recording of values usually involves impact of the operator on the TP. Operator on the fact rarely makes

Data acquisition in OpenSCADA 105

http://wiki.oscada.org/HomePageEn/Doc/LogicLev?v=mly
http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc?v=f2a
http://wiki.oscada.org/HomePageEn/Doc/BlockCalc?v=7ce
http://wiki.oscada.org/HomePageEn/Doc/DAQGate?v=mni
http://wiki.oscada.org/HomePageEn/Doc/DiamondBoards?v=144c
http://wiki.oscada.org/HomePageEn/Doc/ModBus?v=sef

adjustments to the process, therefore, the recording can be performed synchronously. However, there are
situations, such as managing of the TP by the regulator on SCADA-system, acting as a runtime of PLC.

Fig. 3. Diagram of interaction sequence with asynchronous requests.

In accordance with the diagram above, we obtain the following picture:
• object of the attribute of parameter (or the parent object of the controller) performs the periodic
requests HardwarePLC::valueRequest() to get the value of a signal or group of signals;
• received signal values stored in the objects of parameter's attributes locally;
• an object of SCADA-system sends the value request to the object of parameter's attribute
DAQParamAttribute::getVal() and gets locally saved value of the previous session of the inquiry of
data source.

In OpenSCADA this mechanism is implemented by the following modules of subsystem "Data
acquisition".

• Siemens - module of access to the data of Siemens controllers of S7 series. In this module an
asynchronous mode is implemented as for reading data and for recording (optional) to the PLC.
• ModBus - module of access to data sources through the family of ModBus protocols. In the
module an asynchronous mode of reading data is implemented.
• SNMP - module of access to the data of the network devices through the Simple Network
Management Protocol. In the module an asynchronous mode of reading data is implemented.
• System - module of access to the data of the execution area of OpenSCADA. In the module an
asynchronous mode of reading data is implemented.
• DAQGate - module of the reflection of controller's objects of the remote OpenSCADA-stations
on the local one. In the module an asynchronous mode of reading data is implemented.

 1.3. Package acquisition mechanism

Package data acquisition mechanism is characterized by the acquisition of data for each signal by the
packet that includes the history of its changes. Ie per one session of data inquiry we obtain multiple values
of history of the signal. Package mechanism works in conjunction with synchronous and asynchronous
mechanisms.

In the case of working with the synchronous mechanism the actual transfer of the archive of data source
for operational work in the system is done (Fig. 2). As the simple synchronous mechanism, it is desirable to
apply only to low-latency data sources or to the sources whose work is a session type, for example, in the
commercial account to read the values of the counters.

When working in conjunction with an asynchronous mechanism the history of the received signals is
usually placed directly in the archives (Fig. 4), and the current value of the parameter's attribute is set to last
value of the package. This combination is effective during the acquisition of the fast data or during the
synchronization of the archives after the loss of connection to the remote data source.

Data acquisition in OpenSCADA 106

http://wiki.oscada.org/HomePageEn/Doc/DAQGate?v=mni
http://wiki.oscada.org/HomePageEn/Doc/System?v=hf
http://wiki.oscada.org/HomePageEn/Doc/SNMP?v=101r
http://wiki.oscada.org/HomePageEn/Doc/ModBus?v=sef
http://wiki.oscada.org/HomePageEn/Doc/Siemens?v=zhg

Fig. 4. Diagram of interaction sequence with the asynchronous requests of the package mechanism.

In accordance with the diagram above, we obtain the following behavior of the package mechanism for
asynchronous requests:

• object of the attribute of parameter (or the parent object of the controller) performs the periodic
requests HardwarePLC::valueRequest() to get the value's packages of a signal or group of signals;
• received value's packages of signal are placed in the archive by the request
DAQParamAttributeArch::setValues(), and the last value of the packages is located in the objects of
parameters' attributes;
• object of SCADA-system sends the request of the archive's fragment to the object of parameter's
attribute DAQParamAttribute::getValues(), and he relays the request to the archive
DAQParamAttributeArch::getValues(). As the result the fragment of the archive, available after the
previous session of the inquiry of data source, is returned;
• object of the SCADA-system sends the request of the last value of the object of parameter's
attribute DAQParamAttribute::getVal() and gets the locally saved value of the previous session of
the inquiry of data source.

In OpenSCADA this mechanism is implemented by the following modules of subsystem "Data
acquisition".

• DiamondBoards - module for data access of PC/104 cards of Diamond Systems company.
PC/104 cards are available on the ISA-bus, hence, are local and available relatively quickly. When
data acquisition is done through interruption the expectation of the packets of fast (up to 200 kHz) in
one second (up to 200,000 values in the package) is made and the subsequent placing of packets
data in the archives of the DAQ parameters' attributes.
• DAQGate - module of reflection of controller's objects of remote OpenSCADA-stations on the
local one. The synchronous and asynchronous packet mode of reflection of the archives of remote
OpenSCADA-stations is provided.

 1.4. Passive acquisition mechanism

The feature of the passive data acquisition mechanism is the initiative of the providing data in the
SCADA-system from the data source. This mechanism is quite rare, but can occur in certain conditions or
restrictions of the possibility of using the direct data acquisition mechanisms, Fig. 5. An example of such a
situation can be the geographically allocated systems of data acquisition through mobile networks
GPRS/EDGE. In such networks, empowering the individual client nodes with the real IP-address or the
formation of a corporate wireless network can be rather expensive, and therefore more accessible is an
initiative of the data transfer session from client dynamic IP-addresses to the one real IP-address of the
SCADA-system server. Nevertheless it is possible to work through the network DBMS of the dealer.

Impacts of the modification are transmitted to the source of data at the time of data transfer session by
the source.

Data acquisition in OpenSCADA 107

http://wiki.oscada.org/HomePageEn/Doc/DAQGate?v=mni
http://wiki.oscada.org/HomePageEn/Doc/DiamondBoards?v=144c

Fig. 5. Diagram of interaction sequence with the passive working mode.

In accordance with the diagram above, we obtain the following behavior of the passive mechanism:
• data source object carries out periodic connection sessions with the object of the parameter's
attribute DAQParamAttributeArch::setVal() to transfer its own data and receive influence
commands;
• object of the SCADA-system sends the request to the last value of the object of parameter's
attribute DAQParamAttribute::getVal() and gets the locally stored value of the previous connection
session of the data source.

In OpenSCADA this mechanism has not been yet used, but in principle there is the possibility of its
realization in the system.

 2. Virtual data sources
In addition to physical data acquisition the function of the virtual data acquisition is also important.

Virtual data are the data obtained inside the system both independently and on the basis of physical data.
Practically the formation mechanisms of virtual data are implemented in conjunction with the mechanism
of user computing. Among the industrial controllers and SCADA-systems the different programming
languages are used. In the case of controllers such languages can be for example low-level languages
(assemblers), but in recent years the high-level languages (C, Pascal and others) are increasingly used, as
well as the formal languages of IEC 61131-3 (sequential function chart SFC, function block diagrams FBD,
LD relay circuits and text ST, IL). In the case of SCADA-systems computings are often provided with the
help of high-level programming languages and formal languages.

In the OpenSCADA system the programming interfaces and virtual data sources on the basis of different
languages in separate modules of a subsystem "Data acquisition" can be implemented. At the time of
version 0.6.3.2 the available modules of virtual calculators are:

• Calculator on Java-like language: JavaLikeCalc;
• Block calculator: BlockCalc.

At the OpenSCADA kernel the mechanism for user-defined functions or API of user programming is
integrated. User functions can be provided by any object of the system, including modules in accordance
with their functionality, thus providing the user with the set of functions for the control of one or another
object. User API functions can be either static, ie implementing the fixed functionality of an individual
object, and the dynamic ones, ie formed by the user for the desired task in the language of the user high-
level programming.

Module JavaLikeCalc provides the system with the mechanism to create dynamic user-defined functions
and libraries for Java-like language. Description of functions for Java-like language is to tie up the
parameters of the function by the algorithm. In addition, the module has the functions of the direct
calculations by creating a computer controllers with the associated computational function. Module
provides the mechanism to precompile the context-dependent functions that are used to embed the user
algorithms directly in the context of the various components of OpenSCADA. For example, the mechanism
of the parameters' templates of subsystem "Data acquisition" and the visual control engine (VCA).

Module BlockCalc provides the OpenSCADA system with the mechanism for creating user calculations.
Mechanism of calculations based on the formal language of block diagrams (functional blocks). Languages
of block programming based on the concept of block diagrams (functional blocks). And depending on the

Data acquisition in OpenSCADA 108

http://wiki.oscada.org/HomePageEn/Doc/BlockCalc?v=7ce
http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc?v=f2a
http://wiki.oscada.org/HomePageEn/Doc/BlockCalc?v=7ce
http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc?v=f2a

nature of the block, block scheme can be: logic circuits, relay logic circuits, a model of technological
process and others. The essence of the block scheme is that it contains the list of blocks and links between
them. From a formal point of view the block - is an element (function), which has inputs, outputs and an
algorithm for computing. Based on the concept of programming area block - is a frame of values associated
with the object of function. Inputs and outputs of blocks are to be connected to get the whole block scheme.

With the purpose of filling user programming API with user functions the following specialized modules
of static user programming API functions are created:

• Library of function for the compatibility with SCADA Complex1: FLibComplex1;
• Library of standard mathematical functions: FLibMath;
• Library of System API functions: FLibSYS.

Fig. 6. The overall structure of the components of the programming area

Data acquisition in OpenSCADA 109

http://wiki.oscada.org/HomePageEn/Doc/FLibSYS?v=hgy
http://wiki.oscada.org/HomePageEn/Doc/FLibMath?v=67m
http://wiki.oscada.org/HomePageEn/Doc/FLibComplex1?v=17ps

 3. Logic level of data processing
Above we talked that type of data source can vary from a "raw" to the complex. The "raw" means the

source that provides only the basic signal (integer, real, boolean, string, ...) separately. Under the complex it
is meant the source that groups the signals and in the parameter of subsystem "Data acquisition" it provides
the attributes of an additional purpose, covering practically all diagnostic tasks, ie the parameter is the
complete object, which do not need any additions.

Taking into account this variation, the situation may occur, when the information in the object of data
source controller's parameter, is insufficient to describe the real TP object in general and the derived object
of a higher level of abstraction is needed. The solution of this situation is the formation of complementary
parameters, which is not obvious and confusing. The better solution is to use layer, so-called "Logic level",
serving for the flexible formation of parameters, containers of signals with the necessary structure, and
which has post-processing.

Functionally "Logic level" is intended to provide the OpenSCADA system with mechanism of free
formation of parameters' objects, containers of signals of the necessary structure.

Operating appointment of the "Logic level" is:
• expansion of the scope of the OpenSCADA system by increasing the flexibility of description of
parameter's objects of subsystem "Data acquisition";
• reduction of labor costs for the creation of complex automated systems.

The conception of "Logic level" based on the parameters' templates for which in the subsystem "Data
acquisition" it is provided the container of the templates libraries (Fig. 1). Each library contains templates
of parameters that can be used by the modules of "Data acquisition" subsystem for the implementation of
parameters based on templates. The modules of OpenSCADA, which use the templates in their work, are:

• LogicLev - module of the implementation of the classical conception of "Logic level".
• Siemens - data acquisition module for Siemens controllers Series S7. Taking into account the
high flexibility and functionality of this controllers, which allows you to create complex data types
of different structure, all the parameters of this module work on templates.

General mechanism of the "Logic level" on the example of the LogicLev module is shown in Fig. 7.

Fig. 7. The mechanism of the "Logic level" on the example of LogicLev module.

Data acquisition in OpenSCADA 110

http://wiki.oscada.org/HomePageEn/Doc/LogicLev?v=mly
http://wiki.oscada.org/HomePageEn/Doc/LogicLev?v=mly
http://wiki.oscada.org/HomePageEn/Doc/Siemens?v=zhg
http://wiki.oscada.org/HomePageEn/Doc/LogicLev?v=mly

On the figure you can see that the parameters of the logic level controller function as reflections of other
parameters of "Data acquisition" subsystem (on the example of parameters 1 and 4) and the free formation
of parameters based on templates 1, 2 and other parameters of "Data acquisition" subsystem (on the
example of the parameters 2, 3 and 5).

Structure of the parameters with the template in their basis has the structure shown in Fig. 8.

Fig. 8. Structure of the parameters, with a template in its basis.

As can be seen from the structure, the logic level parameter consists of the function object, attributes and
configuration of the template. The function object is an instance of the execution of the template's function
with the set of inputs/outputs and the computation program of the template on the language of user
programming, usually it is the Java-like programming language of the module DAQ.JavaLikeCalc. But the
template may be generally without the program, providing only the structure of transfer the inputs/outputs.
Attributes in the structure represent the list of attributes of the result parameter in accordance with the
template. Configuration in the structure provides the configuration of the template's properties and its
external links.

The logic of the work of logic-level parameters can be written as follows:
• Parameter connects with the template from which we obtain the structure of attributes in
accordance with the template's function.
• At the moment of linking the parameter with the function the linkage of an object of the
parameter's function instance with the function of the template.
• Further, in accordance with the template of function, the structure of links is formed. Based on
the structure of links the form of linkage the parameter is formed and the user sets the links .
• When you access the attributes of the obtained parameter the check for the presence of a direct
link is done. In the case of a direct link presence the request is routed by this link, otherwise the
value is taken from an object of the parameter's function instance.
• At this moment the template's function calculation works using the the object of the parameters'
function. However, before the calculation the reading of the values by the links is made, and after
calculation the results are recorded by these links.

Parameters' template in general provides the following:
• structure of I/O of the template's function;
• signs of the configuration and linkage of the template (constant, link);
• preliminary values of the configuration of constants and templates of links' configuration;
• signs of the attributes of the resulting parameter of the logic level types: not attribute, an attribute
with full access, attribute with read-only access;
• mechanism for calculating the I/O of the templates' function using the user programming
language of OpenSCADA.

Data acquisition in OpenSCADA 111

http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc?v=f2a

Fig. 9 shows image of the configuration tab of the parameters' template of subsystems "Data acquisition"
as the table with the configuration of inputs/outputs and the text of the program of user programming.

Fig. 9. The configuration tab of parameters' template of subsystem "Data acquisition".

The input/output field of the parameter's template provides the following properties of special purpose:
"Attribute", "Configure" and "Value".

The "Attribute" property is the reflecting sign of the the i/o of the template on the resulting attribute of
the parameter. There the following options for this property are provided:

• No attribute - input/output of the template's function does not reflect on the attribute;
• Read only - input/output of the template's function reflects on the attribute with read-only access;
• Full access - input/output of the template's function reflects on the attribute with full access.

The "Configure" property is the sign indicating the using of input/output of the template's function in the
resulting configuration of the template on the logic level. The following options for this property are
provided:

• Constant - available for setting only on the level of the configuration of parameter's template as a
constant;
• Public constant - available for setting at the parameter of logic level in the configuration section
of the template as a constant;
• Link - available for setting at the parameter of the logical level in the configuration section of the
template in the form of link.

The field "Value" describes the preset value for the constants and configuration template of the external
links. Template of the configuration of external links is used to describe the mechanism of grouping and
automatic allocation of external links. The structure of the template of configuration of external links is the
specific for each module of subsystem "Data acquisition", which uses the template's mechanism. In the case
of the logic level module the allocation is made over the external attributes of the parameters with the
template of configuration of the external link of the form: <Parameter>|<attribute>. Where <Parameter> is

Data acquisition in OpenSCADA 112

used to combine the parameters and place on the configuration form, and an attribute - for the associated
linkage of the attributes at the appointment of the parameter.

As an example of the template's using in Figure 10 lets show an images of the parameter of the logic
level module "F3". In Fig.10 the tab "Template config" is presented', it serves for the configuration,
including the linkage, of the parameter's template. In Fig.11 the tab "Attributes" is shown with the list of
attributes and their values, created through the template.

Fig. 10. The "Template config" tab of the "F3" parameter of the logic level module.

Fig. 11. The "Attributes" tab of the "F3" parameter of the logical level module.

Data acquisition in OpenSCADA 113

 4. Redundancy of the data sources
Redundancy in general and of the data sources in particular serves to increase the overall level of fault-

tolerance of the solution by integrating the redundant nodes in collaboration with the main node. In case of
failure of the main node the grab of the main node functions by the redundant one takes place. The
redundant scheme can work in the mode of capacity allocation between the co-operating nodes.

Fig. 12. Horizontal and vertical redundancy.

In the case of a subsystem "Data acquisition" of the OpenSCADA system the data redundancy (Figure
12) performs the following functions:

• Redundancy of the data acquisition mechanism. Typically, this function is realized without
special arrangements by simply running of the parallel redundancy stations with the same
configuration and working independently. However, in the case at the station, which works as PLC,
such approach is unacceptable because of the simultaneous making of control actions and the
absence of synchronization of calculators' data.
• Compensation of the data loss on the time of the node stop with the redundant node archive.
There are two mechanisms of compensation. The first and the main mechanism implements the
loading of the sections of the archive from the redundant station at the time of the station startup in
general or of individual controllers of "DAQ" subsystem. the section of the archive is requested
from the moment of the last record in the local archive and till the current time. The depth of the
request is limited by the indicating of the limit time in the configuration of the redundancy. The
second, complementary mechanism, performs the filling of the "holes" in the archive at the time of
the actual user's request to the data. Such an approach on the one hand allows to make the
predictable in time synchronization at startup and on the other hand - actually eliminates the data
loss in the case of working at least one station during the entire time.
• Capacity allocation of data acquisition between the nodes. When creating complex allocated
systems there can be an important question of predicting and optimizing of the overall system
performance. Taking into account these problems the redundancy mechanism provides the execution
of tasks of data acquisition of individual sources (OpenSCADA controllers) only at one station. The
other stations' tasks would go to data synchronization mode with the executive station. In the case of
loss of the connection with the executive station the task of the local data acquisition is started. It is
also provided the possibility of optimal capacity allocation of the execution of data acquisition task's
of the controllers' group between the stations.
• Optimization of the load on the external data sources through the data request from an external
source by the only one node. In practice, we often meet highly loaded data sources or interfaces of
access to the data sources, for which even the data acquisition by one station can be a problem and

Data acquisition in OpenSCADA 114

would require reducing the acquisition periodicity, ie data quality. The mechanism of redundancy,
except of capacity allocation between the stations as described above allows you to remove an
additional load form the data source and its interfaces, thereby improving the quality of data.
• Prevention of some differences of data on different nodes associated with the mismatch of
moments of time at the independent acquisition of data by individual nodes by means of receiving
the data from the station with an active controller. In systems with redundant and high
accountability it should be excluded or minimized the differences in the data at different stations,
that means the real acquisition of data by one station and synchronization with these data of other
stations.

Configuration of the redundancy starts with the addition of redundant stations in the list of OpenSCADA
system stations in the tab "Subsystem" of the "Transports" subsystem (Fig.13). Then the whole
configuration of the redundancy is made in the "Redundance" tab of subsystem "Data acquisition" (Fig. 14).

Fig. 13. The "Subsystem" tab of the "Transports" subsystem.

Data acquisition in OpenSCADA 115

Fig. 14. The "Redundance" tab of the "Data acquisition" subsystem.

The service task of the redundancy mechanism is always running and executed at intervals which are
prescribed in the appropriate configuration field. The real work on implementing the redundancy is carried
out in the presence of at least one redundant station in the list of stations, and implies:

• Monitoring of the connection with external stations. In the monitoring process the requests to
remote stations are made to get the information about them updated and to check connection. In the
case of loss of connection with the station the repeat of connection to it is made through interval
specified in the configuration field "Restore connection timeout". In the "Live" field of the station
the current state of communication is displayed. In the "Counter" field the number of requests
carried to the remote station, or the time remaining for the next connection attempt to the lost station
is displayed. In the "Run" field there is a list of active controllers at the remote station with a sign of
the local execution.
• Local planning of the controllers' execution in reserve. Planning is carried out in accordance with
the station's level and preferences of controllers' execution.
• calling the data synchronization function for the local controllers working in the mode of
synchronization of data from external stations. During the call, it is being prepared to request of the
data from the remote station for the parameters in the controller starting from the time of the last
request. On the request the only the values of modified attributes and sequence of values from an
archive in case of loss of several cycles of values are returned.

To monitor the time spent in the cycle of redundancy tasks the field status is provided. When
approaching the real time of execution to the cycle of the redundancy tasks it is recommended to increase
the frequency of execution of this task!

For the controller of subsystem "Data acquisition" there is provided the modes of asymmetric and
symmetric redundancy. Asymmetric redundancy is working with the configuration of the controller of the
remote station, as it is, and does not trying to generalize it. Symmetrical mode supposes the synchronization
of configuration of the controllers of stations with the configuration of the highest level station, and
suggests the changes in the configuration of all controllers of the stations when changing it on the one of the
stations. Currently this mode is not implemented!

Data acquisition in OpenSCADA 116

Quick start OpenSCADA
The OpenSCADA is extremely modular, flexible and multi-functional SCADA-system. As a

consequence of this the first contact with OpenSCADA can be quite complex because of the small chance
of matching the previous experience of the user or complete lack of it with the methods of work in
OpenSCADA. However, this is largely just a first impression, because the whole power of OpenSCADA is
in the palm of the user, because of the abundance of which the user can get confused, and he may require
considerable efforts to select the necessary functions to solve his tasks.

For this reason, and to visualize the general concept of work in OpenSCADA this document is created.
The document in the concise and understandable form shows the path from start of OpenSCADA to
creation of the user interface elements on real examples. In addition, the document contains the chapter
with recipes for the configuration, implementation, and typical problems of the user.

The document does not contain the detailed description of the concept and a deep dive into the details of
OpenSCADA, and provides links to the appropriate OpenSCADA documents, containing such information.

Document description is synchronized with the implementation of the examples on the demonstration
database (DB), AGLKS model. Consequently, the user must obtain the distribution kit of OpenSCADA
with this database for illustrative study and testing the examples.

 1. Terms, definitions and abbreviations
The automated workplace — Usually consists of a system unit of the computer system, display,

mouse, sometimes with the keyboard, and other peripheral equipment that is used for visual representation
of technological process data and making the control actions on the TP.

Lock (term) — notional boundary of technological parameter, in the case of its getting over the preset
algorithm steps to prevent the accident are made. In some modes of TP (start) in accordance with the
regulation it may be necessary to disable the lock (unlocking).

Unlocking (term) — process of the lock disabling for the duration of the TP working in the modes for
which the regulation provides this operation. Attention, unlocking the technological parameters is strict
accountable operation and the must be made by operational staff in the proper order.

Quittance (term) — the process of confirming the fact that operational staff drew attention to the
failures of TP working. This process usually entails the adoption of measures by the operator to correct
violations and pressing the appropriate button to stop the alarm.

PLC (abbreviation) — Industrial PLC. Microprocessor-based electronic device to which via computer-
process interface (CPI) the signal of processing parameters are going. PLC acts the role of the direct data
acquisition, processing and making the control actions by means of algorithms of automatic control. In
addition the PLC provides data for the visualization of TP, and receives data of the manual intervention
from the "top level" system.

Alarm (term) — process of notifying the operational staff of the violation of process or work of the
automation equipment. Way of signaling may be of different types of impacts on human senses in order to
attract attention. Often it is involved the following types of alarms:

• Light alarm — usually is done by changing the color of the graphic object (blinking) to emerging
events and by the setting of static accidents colors (red and yellow) for acknowledged events.
• Sound — is made by an audible signal at the time of occurrence of the event. Type of alarm can
be monotonous and the synthesized voice message with information about the violation.

TP (abbreviation) — Technological process. The whole complex of technological equipment of the
production process.

CPI (abbreviation) — Computer-Process Interface. A number of devices or modules of PLC, to which
are directly connected the signals from the sensors of TP for subsequent conversion from analog to digital
form and vice versa. The transformation is carried out with aim of further processing of values of
technological parameters in the PLC.

Quick start OpenSCADA 117

http://wiki.oscada.org/HomePageEn/Using/ModelAGLKS?v=gnj

Alarm setpoint (term) — conventional boundary of the value of technological parameter, the
overcoming of which is considered ad the emergency situation. Usually the following boundaries are
provided:

• The upper and lower emergency boundaries — boundaries of the emergency values of
technological parameter.
• The upper and lower warning boundaries — boundaries of the prevention, regulation boundaries,
of the violation of the technological parameter of the working range.
• Failure — sign of parameter getting over the hardware boundaries of technological equipment.
Usually it characterizes the sensor failure, breakage of the communication channel with the sensor
or PLC.

SCADA (abbreviation) — Supervisory Control And Data Acquisition. The software that performs
complex tasks of data acquisition of TP, their archiving and presentation, as well as the making the control
actions by the operator in manual mode.

 2. Installation
The installation of OpenSCADA distribution kit can be done in two ways. The first and the easiest way

is to get packages for your Linux distribution. The second — to build the OpenSCADA system from
sources. In general, the installation procedure depends strongly on the used Linux distribution and it does
not seem possible to exhaustively describe it in this guide! Therefore, you may need a deep familiarity with
the mechanisms of software installation for the selected Linux distribution from its documentation.

If user does not have deep enough knowledges and skills in the chosen Linux distribution, it is strongly
recommended to choose the Linux distribution by the criterion of existence for it the packages of
OpenSCADA in the repositories of the distribution, which will ensure an easy and problem-free
installation!

If the user can not only install the OpenSCADA, but also the Linux distribution, for the first time he can
use the "live" distribution of Linux, with the installed and ready for work or study demonstration of
OpenSCADA. Currently are available "live" builds on the basis of ALTLinux distribution in the form of
CD and Flash-images on the page: http://oscada.org/en/download. For more details look the chapter
"Recipes".

 The dynamic model of the compressor station, at 6 gas compressors, which lies at the basis of
the demonstration database requires significant computing resources, and more specifically the
processor with a frequency greater than 1 GHz. These resources are needed specifically for the
dynamic model and are not a common resource intensity indicator of the program in its final tasks!

 2.1. Installing OpenSCADA from packages

Installing OpenSCADA from packages, in its turn, can be made by two methods. The first — the
simplest one, when packages of OpenSCADA are already present in the official or additional repositories of
the used Linux distribution, and installation of them — the question of running the typical program of
packages' management followed by selection of the OpenSCADA packages. The second is when the
OpenSCADA packages are got and installed manually.

At the moment the OpenSCADA packages can be found in the repositories of such OS Linux
distributions: ALTLinux and distributions based on the Fedora package base.

To check for OpenSCADA packages presence in the repositories of the used Linux distribution, as well
as to download OpenSCADA packages for manual installation you can at download page of the official
OpenSCADA site (http://oscada.org/en/download).

 You should download the packages directly for the used distributive version, otherwise you can
get unresolved dependencies problems at the installation process.

Description of the installation from the repository of the selected Linux distribution we'll omit and refer
the reader to the documentation of the appropriate distribution.

Quick start OpenSCADA 118

http://oscada.org/en/download
http://fedoraproject.org/
http://www.altlinux.ru/
http://wiki.oscada.org/HomePageEn/Doc/QuickStart?v=g66#h995-27
http://oscada.org/en/download

For the manually installation of OpenSCADA packages lets download them from the official website or
from the other source. You can download packages of two sets.

The first set is represented by the nine packages:
• openscada — package with all necessary files to start OpenSCADA, including all modules;
• openscada-LibDB.Main — main OpenSCADA libraries for DAQ and others in the SQLite DB;
• openscada-LibDB.VCA — visual components libraries in the SQLite DB;
• openscada-Model.AGLKS — model "AGLKS" data bases and config (Demo: EN,RU,UK);
• openscada-Model.Boiler — model "Boiler" data bases and config (EN,RU,UK);
• openscada-docEN — documentation on the OpenSCADA system - English;
• openscada-docRU — documentation on the OpenSCADA system - Russian;
• openscada-docUK — documentation on the OpenSCADA system - Ukrainian;
• openscada-devel — development packages for the creation of the separate modules for the
OpenSCADA.

The second set is represented by about fifty packages with separation of OpenSCADA modules in
different packages:

• openscada-core — contains the OpenSCADA core, basic configuration and launching(starting)
files;
• openscada-DB.* — "DB" subsystem's modules;
• openscada-DAQ.* — "Data acquisition" subsystem's modules;
• openscada-Archive.* — "Archives" subsystem's modules;
• openscada-Transport.* — "Transports" subsystem's modules;
• openscada-Protocol.* — "Transport protocols" subsystem's modules;
• openscada-UI.* — "User interfaces" subsystem's modules;
• openscada-Special.* — "Specials" subsystem's modules;
• openscada-LibDB.Main — main OpenSCADA libraries for DAQ and other into SQLite DB;
• openscada-LibDB.VCA — visual components libraries into SQLite DB;
• openscada-Model.AGLKS — model "AGLKS" data bases and config (Demo: EN,RU,UK);
• openscada-Model.Boiler — model "Boiler" data bases and config (EN,RU,UK);
• openscada-docEN — documentation on the OpenSCADA system - English;
• openscada-docRU — documentation on the OpenSCADA system - Russian;
• openscada-docUK — documentation on the OpenSCADA system - Ukrainian;
• openscada-devel — development packages for the creation of the separate modules to the
OpenSCADA.
• openscada — virtual package containing dependencies for installing the typical configuration of
the OpenSCADA;
• openscada-plc — virtual package containing dependencies for installing the typical
configuration of the OpenSCADA as a PLC;
• openscada-server — virtual package containing dependencies for installing the typical
configuration of OpenSCADA as a SCADA-server;
• openscada-visStation — virtual package containing dependencies for installing the typical
configuration of OpenSCADA as a visual SCADA-station.

The first packages' set is provided for easy, manual installation, because it contains only nine packages.
The second set is designed to be placed in a repository of Linux distribution and for the following
installation of them using the packages manager, which the auto-dependency resolution. The second type of
the packages' set allows you to install only the required components of OpenSCADA, thereby optimizing
the working environment, which is do not allowed by the packages of the first set.

If you are installing from the repository you should only select the package "openscada-Model.AGLKS".
Everything else, according to the dependencies, will be selected and installed automatically.

Manual installation of RPM-packages of the first set can be made by the following command, after
changing the working directory to the directory with the package:

rpm -i openscada-LibDB.Main-0.8.0-alt1.noarch.rpm openscada-LibDB.VCA-0.8.0-
alt1.noarch.rpm openscada-Model.AGLKS-0.8.0-alt1.i586.rpm openscada-0.8.0-
alt1.i586.rpm

Quick start OpenSCADA 119

Manual installation of DEB-packages of the first set is made by the following command, previously
having changed the working directory to the directory with the package:

dpkg -i openscada-libdb.main-0.8.0-1_all.deb openscada-libdb.vca-0.8.0-
1_all.deb openscada-model.aglks-0.8.0-1_all.deb openscada_0.8.0-1_i386.deb

In the process of installation it may cause bugs related to missing dependencies, because of the
unresolved dependences. The manual installation of the packages means that you'll solve them manually,
like installing packages of OpenSCADA, or via the packages manager of Linux distribution. You can read
the details of the RPM-package software installing process by the click on:
http://skif.bas-net.by/bsuir/admin/node51.html.

 2.2. Installation from sources

If you can not get packages of OpenSCADA for the selected distribution, it remains the only option of
OpenSCADA building from the sources. The building process of OpenSCADA is described in details in the
guide on the following link http://wiki.oscada.org/HomePageEn/Doc/BuildFromSource. However, it must
be borne in mind that if you managed to build OpenSCADA from sources, then this document is not for
you, and you probably can easily master the basic documents of OpenSCADA
(http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual).

This chapter is given here for completeness and integrity of the consideration of the question, because
the required qualification level of the user for this chapter is much higher than the level of the document at
whole!

Quick start OpenSCADA 120

http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual
http://wiki.oscada.org/HomePageEn/Doc/BuildFromSource
http://skif.bas-net.by/bsuir/admin/node51.html

 3. Initial configuration and start
After successful installation of the OpenSCADA with the database of "AGLKS" model no pre-

configuration is required. If you want to perform a particular configuration, which differs from the base,
then use the document of description the OpenSCADA program on the link:
http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual#h932-1.

 The demonstration of OpenSCADA based on the "AGLKS" model database is not the same as
that is usually provided by the commercial software vendors to demonstrate the possibilities, but to
exclude or to complicate the normal operations by limiting the functions. Demonstration of
OpenSCADA is fully-functional system that provides examples of implementation and configuration of
various components. Based on the "AGLKS" model database and other OpenSCADA models one can
easily create own projects, using the given resources.

You can execute the OpenSCADA with "AGLKS" model database from the menu of the desktop
environment in the "Graphics" section, "Model 'AGLKS' on open SCADA system" with the characteristic
icon (Fig. 3.1).

Fig. 3.1. Menu item of the desktop environment to start the demonstration of OpenSCADA.

Start also can be done from the console by the command:
$ openscada_demo

Quick start OpenSCADA 121

http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual#h932-1

 When you start OpenSCADA from the console with the command "$ openscada" , the system
is launched without any configuration and the result is the request of the user name and password to
login. By default, the system provides OpenSCADA super user "root" (password "openscada") and
unprivileged "user" (password "user"), which have no relation to the users of the operating system.
Starting the OpenSCADA in this way makes sense only if it is done from the OS administrator ("root")
or in daemon mode.

After start we'll get the window of the OpenSCADA graphical configurator — QTCfg (Fig.3.2) with the
opened root page. Demo database specifically configured so that the first window you'll see after start it is
the configurator's window. You can then open the window for creating graphical user interfaces, as well as
run the user interface project's execution.

Fig. 3.2. OpenSCADA configurator - QTCfg, the root page.

Configurator of OpenSCADA is the main and sufficient instrument for the configuration of any system's
component. Like many other components of OpenSCADA, configurator is implemented as a module.
Besides the QTCfg configurator there may be available other configurators that performs the same function,
but implemented on the basis of other technologies. For example, these are the Web-configurators: WebCfg
and WebCfgD.

All actions in the future, we will make only in the configuration tool QTCfg, although all of them can be
done in other configurators.

The structure of the configurator's window interface can be considered in detail by reference
http://wiki.oscada.org/HomePageEn/Doc/QTCfg. It is more important now for us to examine all the

Quick start OpenSCADA 122

http://wiki.oscada.org/HomePageEn/Doc/QTCfg
http://wiki.oscada.org/HomePageEn/Doc/WebCfgD?v=w2c
http://wiki.oscada.org/HomePageEn/Doc/WebCfg?v=ecy

available interfaces OpenSCADA, so click next to last icon in the top on the toolbar. After clicking on this
icon the window of user interface development will be opened (Fig.3.3).

Fig. 3.3. Window of the UI development.

Quick start OpenSCADA 123

Then we can start the "AGLKS" project's execution. To do this, select it in the list of projects and run by
clicking on the first left icon on the toolbar or in the the popup menu. The result will be the window of user
interface (Fig.3.4).

Fig. 3.4. Window of the user interface of the "AGLKS" project.

Building and executing of the user interfaces is implemented by the Vision module of the "User
interfaces" subsystem. In addition to this module it can be accessed the other modules of visualization. For
example, OpenSCADA provides the WebVision module, which allows to execute projects, previously
developed in the "Vision" interface module, through the Web-based technologies and standard Web-
browser. All actions in the future we will make only in the interface of the "Vision" module.

So we ran the demonstration of OpenSCADA and familiarized with the main set of tools. In the future
we will use them for configuration of OpenSCADA, creating the tasks of data acquisition, binding the
collected data with the purpose of their processing and making the impacts, as well as to create the
visualization user interface of the received data and to make the control actions.

Lets close the window of the "AGLKS" project's execution and the window of the user interface
development to prepare for the study of the following chapters.

The whole process of SCADA-system's configuration to perform the "top level" functions can be divided
into two stages:

• The configuration of data sources and creation the database (DB) of the parameters from these
sources.
• Formation of a visual presentation of technological process (TP) data by creating the operator's
interface in the form of mnemonic schemes, groups of graphs (trends), groups of contours,
documents, etc.

Quick start OpenSCADA 124

http://wiki.oscada.org/HomePageEn/Doc/WebVision?v=1dju
http://wiki.oscada.org/HomePageEn/Doc/Vision?v=te1

 3.1.Creation the user's project from scratch

All the actions in the following sections are described in the "AGLKS" (demonstration) model database
environment with the purpose of the widest and the most descriptive presentation of the configuration
process, with the ability to connect to a real-live data source, realized on the basis of the gas compressor
station TP model. However, it is necessary to describe the process of creation a user project from scratch,
which is obviously your final goal. On the basis of a new user's project you can perform all the following
steps with the "AGLKS" model database, but with an eye to your own data sources of a new project.

To start a clean user's project there is the item "OpenSCADA System" with the characteristic icon in the
desktop environment menu, the "Graphics" section (Fig.3.1.1).

Fig. 3.1.1. Menu item of the desktop environment to start the clean user's project.

The start can also be done with the following command:
$ openscada_start

Quick start OpenSCADA 125

A clean user's project does not contain any project-specific configuration and is configured to work in
the user's directory "/.openscada", with the main SQLite database in the file "DATA/MainSt.db". It is
easier to create a complex SCADA-system's project using the libraries of API functions of the
OpenSCADA object model, libraries of graphic elements, as well as with the help of other OpenSCADA
libraries. To use the OpenSCADA libraries, stored in a database file, they need to be connected, added in
the "SQLite" database module's object (Fig.3.1.2), as well as it is necessary to set the address and the
database charset to "UTF-8" (Fig.3.1.3).

Fig. 3.1.2. Add the "SQLite" DB object.

Quick start OpenSCADA 126

http://wiki.oscada.org/HomePageEn/Using/GraphicElementsLibraries?v=sec
http://wiki.oscada.org/HomePageEn/Using/APIFunctionLibs?v=17nb
http://wiki.oscada.org/HomePageEn/Using/APIFunctionLibs?v=17nb

Fig. 3.1.3. "SQLite" DB object of OpenSCADA library.

OpenSCADA distributions supplied with a number of libraries in the form of "SQLite" database files
(Table 3.1), which, when you run the clean user's project are placed to the "LibsDB/" directory. According
to this list, lets add them in the "SQLite" database module's object, set the "Enabled" flag and save. Next, to
load the library contents it is necessary to enable the database and click "Download this system from the
database", but during the loading some of new objects are disabled so it's easier to complete a exit user's
project and start over again.

Table 3.1. OpenSCADA libraries included in the distribution.
ID Name Address Languages/charset

OscadaLibs Functions libraries ./LibsDB/OscadaLibs.db EN,RU,UK/UTF-8

vcaBase VCA: Main libraries ./LibsDB/vcaBase.db EN,RU,UK/UTF-8

vcaTest VCA: Tests ./LibsDB/vcaTest.db EN,RU,UK/UTF-8

vcaElectroEls VCA: Electrical elements library of the
user interface

./LibsDB/vcaElectroEls.db EN,RU,UK/UTF-8

After the addition of OpenSCADA libraries you'll get an environment ready for addition of data sources
and the formation of the new SCADA-system project's interface.

Quick start OpenSCADA 127

 4. Working with Data Sources
he main function of any SCADA-system is to work with data sources of realtime, namely the inquiry of

programmable logic controllers (PLC) and simple modules of CPI. For more details see the document "Data
acquisition in OpenSCADA" on the following link: http://wiki.oscada.org/HomePageEn/Doc/DAQ.

Support of the one or another data source depends on the protocol or API, through which the source
provides its data, and the availability for the protocol/API the module in the subsystem "Data acquisition"
in OpenSCADA. The total list of modules of the subsystem "Data acquisition" and documentation on them
can be found here http://wiki.oscada.org/HomePageEn/Doc#h735-4 in the appropriate chapter.

Obtained from sources data subsequently are archived, processed and used for visual representation for
the operator of TP.

 4.1. Data acquisition from the TP device

As an example lets examine and create the inquiry for the air cooler device. Demo database contains the
real-time model of the compressor station with six compressors. Data for two devices of air coolers
"AT101_1" and "AT101_2" of the compressor station "KM101" are available via the ModBus/TCP
protocol on the 10502 port.

We will create the inquiry controller's object via the ModBUS/TCP protocol and get these data, thereby
practically made the task of inquiry of real data, because from the external device our configuration will be
different only in address of the device, addresses of the ModBUS registers and maybe the interaction
interface.

Quick start OpenSCADA 128

http://wiki.oscada.org/HomePageEn/Doc#h735-4
http://wiki.oscada.org/HomePageEn/Doc/DAQ

There is "ModBUS" module in the "Data acquisition" subsystem for the data acquisition via "ModBUS"
protocol in OpenSCADA. To add a new controller we will open the page of the "ModBUS" module in the
configurator ("Demo Station"->"Data acquisition"->"Module"->"ModBUS") and in the pop-up menu of the
"ModBUS" item lets click "Add" (Fig. 4.1.1).

Fig. 4.1.1. Adding the controller in the "ModBUS" module of the "Data acquisition" subsystem.

Quick start OpenSCADA 129

At the result of our actions the dialog window will appear (Fig.4.1.2) to enter the ID and name of the
new controller. IDs of any objects in OpenSCADA are limited by 20 characters and they should be entered
using English alphabet characters and numerals. In addition, it is desirable to start the ID with the letter.
This is due to the fact that the identifier can later be used in scripts. The OpenSCADA objects' names are
limited by 50 characters and can contain any characters. The names are usually displayed. If the name field
is blank, instead it the identifier will be displayed. Enter the ID "KM101" and the name "KM 101".

Fig. 4.1.2. Dialog to specify the ID and name of the new object.

Quick start OpenSCADA 130

After confirmation we have a new controller's object. Lets choose it in the configurator and get
acquainted with its settings (Fig.4.1.3).

Fig. 4.1.3. The main tab of the controller's object settings of the ModBUS module.

Settings of the controller's object, as a rule, are specific for the different types of data sources and
protocols. You can familiarize in details with the settings of the controller's object of the ModBUS module
using the link http://wiki.oscada.org/HomePageEn/Doc/ModBus#h871-13. We'll examine the general
configuration of the controller's object and the key settings for the ModBUS module.

Before the connection configuration with your controller you need from the controller's documentation
to find the settings of network interfaces and protocols, and also, in the case of "ModBus" using, to get the
association table for external and internal controller's signals with the numbers of "ModBus" registers.

With the help of the page of the controller's object in the section "Status" may be primarily assessed the
current state of the controller's object and the real state of connection with the physical controller, as well as
it can be quickly changed. For example, field "Status" contains the code of error and the textual description
of the current state of connection with the controller, in this case the controller's object is disabled. We are
able to enable it and start by setting the flags beside the appropriate fields. Enabled controller's object
initializes the parameters objects, the running one runs the acquisition task and provides an opportunity to
transmit data to the controller through the attributes of the parameters. The DB field indicates which
database to store in the configuration of the object. We will store the data to main database, ie leave it by
defaults.

Quick start OpenSCADA 131

http://wiki.oscada.org/HomePageEn/Doc/ModBus?v=b74
http://wiki.oscada.org/HomePageEn/Doc/ModBus#h871-13
http://wiki.oscada.org/HomePageEn/Doc/ModBus?v=b74

In the "Config" section the configuration of the controller's object is directly contained:
• "ID" and "Name" are the fields, we've just entered at the object's creation. The Name can be
changed right here, but the ID can not be changed so simply. If you want to change the ID you must
Cut (Ctrl+X) and Paste (Ctrl+V) the object and enter the desired ID.
• "Description" may contain the detailed description and purpose of the controller's object. In our
case, the value of this field is not principal.
• "Enable" and "Run" indicated the state, in which to transfer the controller's object at start of
OpenSCADA. Lets set both fields.
• "Parameters table" — contains the name of the database's table in which to store the
configuration of parameters of the controller. Leave it default.
• "Acquisition schedule" — contains the configuration of the scheduler to run the inquiry task. To
get the description of the format of the configuration of the field you can from the tooltip. The single
number indicates the periodicity of run in seconds. Let it be one second.
• "Gather task priority" — indicate the priority of the task (from -1 to 99). Priorities above zero are
meaningful only when you start OpenSCADA from the privileged user. Leave this field unchanged.
• "ModBUS protocol" — indicates to variant of the ModBUS protocol. The protocol variants
possible "TCP/IP", "RTU" and "ASCII". At the moment we are interested in the option "TCP/IP", so
leave it as is. The protocol variants "RTU" and "ASCII" need for set at case communication with the
controller by serial interfaces, typically "RS-485".
• "Transport address" — indicates the outgoing transport of the subsystem "Transports", which is
used to connect to the controller. In the case of "TCP/IP" option we need the transport module
Sockets, and in case variants "RTU", "ASCII" and serial interfaces we need the transport module
Serial. We'll examine the creating of the outgoing transport in "Sockets" and "Serial" in details
below.
• "Destination node" — indicates the node of data source or conroller in ModBUS network. In our
case, it should be "1".
• "Data fragments merge" — includes the merging not related fragments of registers in the single
block of the request, up to 100 registers, instead generating individual requests. Allows you to
reduce the total time of the inquiry. Lets set this option.
• "Using write functions for more items (0x0F,0x10)" — instead one-item write will used multi-
items functions. Leave this field unchanged.
• "Connection timeout" — indicates how long to wait for the response from the controller and after
which to report an error of connection. Zero indicates the use of time of transport. Unchanged.
• "Restore timeout" — specifies the time in seconds after which if there is no connection to retry to
reconnect.
• "Maximum request block size (bytes)" — maximum size (bytes) of registers and coils blocks set.
Usefull for some controllers with like limits. Unchanged.

Lets save our changes to the database by clicking the second left icon on the toolbar.

Quick start OpenSCADA 132

http://wiki.oscada.org/HomePageEn/Doc/Serial?v=935
http://wiki.oscada.org/HomePageEn/Doc/Soskets?v=1bg0

Now, in the same manner as the controller's object, let's create the outgoing transport in the module
"Sockets" ("Demo Station" ->"Transports"->"Sockets") through the context menu (Fig.4.1.4). And let's call
the transport as well as the controller: "KM101" and the name "KM 101". Note that in the "Item type" of
the dialog (fig.4.1.2) you should choose the "Output transport.

Fig. 4.1.4. Adding the outgoing transport in the module "Sockets" of subsystem "Transports".

Quick start OpenSCADA 133

The configuration page of outgoing transport is shown in Fig.4.1.5. This page also contains the section
of the status and operational control. In the "Status" field the textual description of the current state of
transport is contained. We can run it for execution by checking the box in front of the appropriate field.
Running object of the transport initiates the connection to the external node. Field DB indicates the
database to store the configuration of the object. We will store it in the main database.

Fig. 4.1.5. The configuration page of the outgoing transport of the "Sockets" module of subsystem

"Transports".

In the "Config" section the configuration of the transport object is contained:
• "ID" and "Name" contain the titles, which we entered when creating the object.
• "Description" — may contain the detailed description and purpose of the object.
• "Address" — specifies the type, address and mode of connection with the remote station. You
can view the record format in the tooltip. Let's set this field to the value "TCP:localhost:10502".
• "To start" — indicates in what state to transfer an object at start of OpenSCADA. Let's set the
field.
• "Timings" — indicate the duration of waiting for the response from the remote station. You can
view the record format in the tooltip. Let us leave the value unchanged.

Other types transports created by like to "Sockets" method, but configuration typical different only at
record format for address and timings. In case of transport module "Serial" into address field write the path
to serial device, speed, and format. For converters USB->Serial that address you need learn into operation
system, for example by console command "$ dmesg", just after the converter connection.

Let's save the transport and return to the configuration field "Transport address" of the controller's object
and select the address "Sockets.KM101". Setting the controller's object is finished, enable it by set flag
"Enabled". The next step is configuration and choose the data you need to query from the controller. This
setting is done by creating an object "Parameter" of the controller. The "Parameter" object allows you to

Quick start OpenSCADA 134

describe the list of data obtained from the comptroller and to transmit them to the environment of
OpenSCADA.

To add a new object of the parameter we will open in the configurator the page of our controller's object
and on the popup menu of item "KM101" we'll click "Add". The parameter's object we'll call "AT101_1"
and the name "AT 101_1".

The configuration page of the obtained parameter is shown in the Fig.4.1.6. This page contains the
section of status and operational control. In the "Type" field it is contained the ID of the type of the
parameter, in this case it is only possible the "Standard" type (std). We can enable the parameter by
checking the box of the appropriate field. The enabled parameter is involved in the process of exchange
with the controller.

Fig. 4.1.6. Configuration page of the controller's parameter "ModBUS".

In the "Config" section the configuration of tge parameter's object is contained:
• "ID" and "Name" contain the titles, which we entered when creating the object.
• "Description" — may contain the detailed description and purpose of the object.
• "To enable" — indicates in what state to transfer an object at start of OpenSCADA. Let's set the
field.
• "Attributes list" — contains the configuration of attributes of parameters in relation of them to the
registers and bits of ModBUS. You can view the record format in the tooltip. Let's set the contents
of the text field as follows:

R:100:r:Ti:T input
R:101:r:To:T output
R:102:rw:Cw:Productivity.

Quick start OpenSCADA 135

Similarly, create the second option: "AT101_2" with the name "AT 101_2". The list of attributes fro it
let's set in:

R:103:r:Ti:T input
R:104:r:To:T output
R:105:rw:Cw:Productivity.

Let's save the both objects of the parameter. Now we can enable and run our controller to initiate the
exchange. To do this, go back to the page of our controller's object and in the "Status" section let's set the
flag "Run". If we do not miss something, the exchange is successfully started and in the "Status" field we'll
get something like this, as it is shown in the Fig.4.1.7.

Fig. 4.1.7. The page of the controller's object if the exchange with the physical controller is successful.

Quick start OpenSCADA 136

In the case of a successful exchange with the physical controller, we'll obtain the described data of the
controller in the infrastructure of OpenSCADA. You can see these data on the tab "Attributes" of our
parameters AT101_1 (Fig.4.1.8) and AT101_2. Because the inquiry is regularly and at intervals of a
second, then we can observe their changes by clicking the button "Refresh current page" on the toolbar.

Fig. 4.1.8. The page of described attributes of the AT101_1 parameter.

The configuration of data acquisition is complete.

Quick start OpenSCADA 137

 4.2. TP data processing

Frequently the initial data obtained from the data source are the "raw", ie unprepared or uncomfortable
for the visual presentation, so you need to perform this preparation. In our example, we received the data
that comes in the code from the scale inside the controller. Our task is to perform the calculation of real
values from the received data. Data processing in OpenSCADA can be done, either during the visualization,
and in the subsystem "Data acquisition". However, the mixing of the visualization process and processing
of initial data makes the configuration confusing and makes the obtained images of the visualization
unsuitable for reuse. For this reason, let's make the preparation of data in the subsystem "Data acquisition".

Calculations in the subsystem "Data acquisition" are done via the module of logic level LogicLev and
the templates of parameters of the subsystem "Data acquisition". To familiarize with the concept of "logical
level" you can here: http://wiki.oscada.org/HomePageEn/Doc/DAQ#h942-9.

To make calculations in the module of the logic level you must first create the template of the parameter
of subsystem "Data acquisition". To do this, let's open the page of templates' library "Main templates"
("Demo Station"->"Data acquisition"->"Template library"->"Main templates") and through the context
menu we will create the template object "airCooler" with the name "Air cooler". The configuration page of
the resulting object is shows in the figure 4.2.1. This page contains the "State" section and the section of the
operational control. We can make the template accessing by checking the box next to the corresponding
field. Accessing templates can be connected to the data acquisition parameters, and the parameters will
make calculations on this template. In the "Used" field the number of objects that use this template to
calculate the image of the parameter is indicated. In the "Config" section only the familiar for us
configuration fields are present.

Fig. 4.2.1. The configuration page of the template's object.

Quick start OpenSCADA 138

http://wiki.oscada.org/HomePageEn/Doc/DAQ#h942-9
http://wiki.oscada.org/HomePageEn/Doc/LogicLev?v=yzr

The basic configuration and the formation of the template of parameter of data acquisition is made in the
tab "IO" (Fig.4.2.2) of the template. The detailed description of the process of the template's formation can
be found here: http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual#h932-6.

Let's create in the template two properties fro the inputs ("TiCod", "ToCod"), two for outputs ("Ti","To")
and one clear property ("Cw"). For the "TiCod", "ToCod" and "Cw" let's set the "Configure" flag to the
"Link", this will let to link to them the "raw" source. For the "Ti" and "To" let's set the "Attribute" flag to
the "Read only", and for the "Cw" — "Full access", we make it to form the three attributes of the resulting
parameter of the data acquisition: two — read only and one with the full access.

The program language let's set to "JavaLikeCalc.JavaScript", and the program:
Ti=150*TiCod/65536;
To=100*ToCod/65536;

Fig. 4.2.2. Tab "IO" tab of the configuration page of the template's object.

Let's save the resulting template and set the accessibility flag.

Now we'll create the controller's parameters' objects in the "LogicLev" module of subsystem "Data
acquisition". The controller and its parameters in the module "LogicLev" are identical to the previously
created in the module "ModBUS" and they are created on the page: "Demo station"->"Data acquisition-
>"Module"->"Logic level". The object of the controller and the parameters will be called identical to the
objects in the module "ModBUS".

Quick start OpenSCADA 139

http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual#h932-6

The object of the controller of the module "LogicLev" (Fig.4.2.3) has no specific settings and the default
ones may not be touched.

Fig. 4.2.3. The main tab of the configuration of the object of controller of the LogicLev module.

Quick start OpenSCADA 140

The object of the parameter of controller of the "LogicLev" module (Fig.4.2.4) has the specific setting
"Type", where you need to set "Logical" (std) and into setting "Parameter template" select the address of
the template, we have just created.

Fig. 4.2.4. Configuration page of the "LogicLev" controller's parameter.

In addition to the basic configuration of the parameter it is necessary to configure the attached template
(Fig. 4.2.5). Configuration tab of the template appears in the parameter's mode "Enable". To enable the
parameter it is possible by the previously enabling the controller. The flag "Only attributes are to be shown"
allows you to set apart each link (Fig.4.2.6). Since we are made the following format of linkage in the
template "Parameter|Ti", then all three links we can set simply by typing an address to the parameter in the
"ModBus" controller. We shall specify the following addresses "ModBus.KM101.AT101_1" and
"ModBus.KM101.AT101_2" in the appropriate parameters.

It should be noted that all the input fields addresses of objects in OpenSCADA provide a mechanism to
set the address. This mechanism involves elemental choice, during which there is a movement in the
interior. For example, typing the address "ModBus.KM101.AT101_1" first we will be able to choose the
type of data source, including the "ModBus". By selecting "ModBus" in the list of available items for
selection will be added to the module controllers "ModBus", among which will be "ModBus.KM101".
Select the item "ModBus.KM101" add to the list of parameters of the controller, etc. to the final element in
accordance with the hierarchy of objects
(http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual#h932-6). To be able to return to levels above
the selection list of all the elements are inserted into the higher levels of the current value of the address.

Quick start OpenSCADA 141

http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual#h932-6

Fig. 4.2.5. The "Template config" tab of the "LogicLev" controller's parameter page.

Fig. 4.2.6. The "Template config" tab of the "LogicLev" controller's parameter page with the links details.

Quick start OpenSCADA 142

Let's save the created objects of the controller and parameters. After this, run the controller for execution
by setting the controller's flag "Run" in the "State". If we do not miss something, the calculation is
successfully started and in the "State" we'll get something like the one on Fig.4.2.7.

Fig. 4.2.7. The page of the controller's object if the calculation of the controller in the "LogicLev" module

is successful.

Quick start OpenSCADA 143

In case of successful processing of the template's code in the parameters we'll obtain the processed data
in the infrastructure of OpenSCADA. You can see these data on the tab "Attributes" of our parameters
AT101_1 (Fig.4.2.8) and AT101_2.

Fig. 4.2.8. The page of the attributes of the parameter AT101_1 of "LogicLev" module.

The configuration of data processing is complete.

Quick start OpenSCADA 144

 4.3. Typified Data Sources Parameters

In the previous sections the data source connection mechanism has been described for the apparatus
object ("Air Cooler"), which provides the unification of all signals in a single parameter's object of the data
source. However, a more common approach is to create a parameter's object around a signal, such as
"Temperature at the cooler's outlet AT101_1 (TE1314_1)".

Creating the parameter's object around the signal allows to formalize its description to the templates of
analog and digital signals by including to them all necessary processing, alarming and other characteristic
information. For a simple configuration of the typified analog and digital signals there are the parameters
templates in the OpenSCADA libraries, and many of the visual presentation images are adapted to work
and binding with these parameters directly, without going into details on the attributes.

Typically, for the formation of a parameter's object based on a template the logic level module LogicLev
is used, as described in the previous section. However, a number of modules, including ModBus provide
the ability to immediately create logical parameters, based on the template. We'll add new parameter's
objects by opening the early created page of our "ModBus" controller's object in the configurator, and in the
context menu of the "KM101" item lets press "Add".

Lets name the analog parameter object "TE1314_1" — id and the name is "TE1314_1" (Fig.4.3.1).
Parameter's type lets set to "Logical", the parameter's template — "base.anUnif", description — "The
temperature at the outlet of AT101_1", lets set the "To enable" and "Enable" flags. Next, we need to
configure the parameter's template in the tab "Template Configuration" tab (Fig.4.3.2): the "Input" field is
set to ModBus-register's address of this parameter "R:101", the "Maximum module scale" is set to 65535,
which corresponds to 100 °C. Next, lets go to the "Attributes" tab (Fig.4.3.3) and set some fields,
"Dimension" is set to "deg. C", "Scale minimum" to "0", "Scale maximum" to "100"; "Border up alarm" to
"40", "Border up warning" to "30". Lets save the parameter's object.

Fig. 4.3.1. The page of the logical parameter "TE1314_1" of the "ModBus" module.

Quick start OpenSCADA 145

http://wiki.oscada.org/HomePageEn/Doc/ModBus?v=b74
http://wiki.oscada.org/HomePageEn/Doc/LogicLev?v=yzr

Fig. 4.3.2. The page of the "TE1314_1" parameter's template configuration of the "ModBus" module.

Fig. 4.3.3. The page of the "TE1314_1" parameter's attributes of the "ModBus" module.

Quick start OpenSCADA 146

The discrete parameter's object lats name: "KSH102" — id and the name is "KSH102". Parameter's type
lets set to "Logical", the parameter's template — "base.digitBlockUnif", lets set the "To enable" and
"Enable" flags. Next, we need to configure the parameter's template in the tab "Template Configuration" tab
(Fig.4.3.4): the "Command 'Open '" field is set to the value of the ModBus-bit address of the parameter
"C:100:rw"; the "State 'Opened'" field is set to the value of the ModBus-bit address "C:101", the "State
'Closed'" field is set to the value of the ModBus-bit address "C:102", the "Hold command time (s)" field is
set to 0, because the command if not the pulse one. Next, lets go to the "Attributes" tab (Fig.4.3.5) and
make sure the availability of command and states. Save the parameter's object.

Fig. 4.3.4. The page of the "KSH102" parameter's template configuration of the "ModBus" module.

Quick start OpenSCADA 147

Fig. 4.3.5. The page of the "KSH102" parameter's attributes of the "ModBus" module.

Quick start OpenSCADA 148

 4.4. Enabling the TP data archiving

Many tasks require to keep the history of parameters of the TP. To activate the archiving of the attributes
"Ti" and "To" of the AT101_1 and AT101_2 parameters in the previously created controller of the
"LogicLev" module it is enough on the "Archiving" tab of the configuration page to choose which attributes
are to be archived and by what archivers (Fig.4.4.1). We'll choose the archiving of "Ti" and "To" attributes
in the "FSArch.1s" archiver. The same thing you can do for attribute "var" of analog parameter
"ModBus.KM101.TE1314_1" and for "com" of digital parameter "ModBus.KM101.KSH102".

Fig. 4.4.1. The "Archiving" tab of the AT101_1 parameter of the "LogicLev" module.

Quick start OpenSCADA 149

As the result of this operation it will be automatically created the objects of archives for the selected
attributes. For example, the archive's object for the attribute "Ti" of the AT101_1 parameter is presented at
Fig.4.4.2.

Fig. 4.4.2. The page of the archive's object of the "Ti" attribute of the AT101_1 parameter.

Quick start OpenSCADA 150

Usually the settings of the archive do not need to be change, but if you need the special configuration, it
can be done on the aforesaid page. Often you may need to obtain the information about the archive. For
example, find the archive's size, both in time and in the bytes, as well as to look at the graph(diagram) of
the parameter (Fig.4.4.3).

Fig. 4.4.3. The "Values" tab of the page of the archive's object of the "To" attribute of AT101_1 parameter.

Quick start OpenSCADA 151

 5. The formation of visual presentation
The formation of visual presentation may be performed at three levels of complexity and the user can

select any of them, depending on the level of his knowledge and availability of libraries with ready-made
images and templates.

The first level requires a minimum qualification of the user, but implies the presence of template frames'
libraries, which are needed to solve his task. Within the limits of the first level the user only has to know
how to connect the dynamics to the template frames' pages and how to add new pages of the template
frames.

The second level provides the additional ability to create new frames based on the finished complex
elements, simply by their placement in the frame. To achieve this qualification level users will need
libraries of complex elements needed to solve his tasks.

The third level requires that user is able to use of all the tools of the development environment of visual
interfaces of OpenSCADA, including the creation of new complex elements and developing of the new user
interfaces in the project.

All works on the visualization interface we will make in an environment of the "Vision" module of
subsystem "User interfaces". To open the "Vision" interface window you should click the second icon on
the right on the configurator toolbar. The result is the window previously shown in Fig.3.3.

The interfaces of user-operator realizing into OpenSCADA by the projects of visualization. Into library
main elements library of the user interface the typical project template has presented, which based on signal
objects model and display views concept. The user can start for self concept of visualization interface
creation, by new project, or can use pointed template. For new visualization project creation you will need
third level knowledges and hard work which placed over this document. By that will see to creation the
visualization interface based on allowed template project.

Fig. 5.1. The template project by the signal objects concept.

Quick start OpenSCADA 152

http://wiki.oscada.org/HomePageEn/Using/GraphicElementsLibraries/MainElements?v=476

The template contain two branches: "Control panels" and "Root page". The branch "Control panels"
contain typical control panels and special frames set. Branch "Root page", with the root page basis, contain
subbranches for signal objects "Group 1", "Group 2" and different branch of "Result graphics". The signal
object's subbranches "Group {n}" have number identifier and can expanded by appending up to 16. The
subbranch "Group {n}" presenting will display by activation corresponding to it signal object's button on
root page, which will allow switch to it. Every subbranch "Group {n}" has containers or templates for
display views, typical: "Mnemo", "Graphics groups", "Contours groups", "Groups of overview frames" and
"Documents". Any pages present into containers will enable selection the display view, for corresponding
signal object of root page. About root page structure you can detailed see by link
http://wiki.oscada.org/HomePageEn/Using/GraphicElementsLibraries/MainElements#h1039-45.

For creation self visualization project user can copy the template project and call it for self. We will
continue work direct with template project and place our pages into mnemo-containers and graphics groups.

 5.1. Adding the template page in the project and linkage of the dynamics

Let's examine the first level of complexity task, when in the already designed interface it is necessary to
link the dynamics to the template page. The concept of "Page's template" means the page on the basis of
which with the help of inheritance it can be created a lot of final visualization pages with an individual list
of the dynamics. The examples of these pages are: "Graphics group", "Contours group", "Overview frames
panel" and "Result graphics". In the Fig.5.1.1 the template page "Graphics group" in the project tree "Signal
groups (template)" is presented.

Fig. 5.1.1. The template page "Graphics group".

The "Graphics group" template page provides an opportunity to link up to eight signals for simultaneous
display them on the diagram. Elements at the top will automatically hide for unspecified links.

Quick start OpenSCADA 153

http://wiki.oscada.org/HomePageEn/Using/GraphicElementsLibraries/MainElements?v=476#h1039-37
http://wiki.oscada.org/HomePageEn/Using/GraphicElementsLibraries/MainElements?v=476#h1039-22
http://wiki.oscada.org/HomePageEn/Using/GraphicElementsLibraries/MainElements?v=476#h1039-22
http://wiki.oscada.org/HomePageEn/Using/GraphicElementsLibraries/MainElements?v=476#h1039-14
http://wiki.oscada.org/HomePageEn/Using/GraphicElementsLibraries/MainElements?v=476#h1039-30
http://wiki.oscada.org/HomePageEn/Using/GraphicElementsLibraries/MainElements#h1039-45

Let's create the new group of graphs "Graphics 2" in the template container "Graphics group" of the first
group of the root page of "Signal groups (template)". To do this, let's in the context menu of the "Graphics
group" item select "Add visual item" (Fig.5.1.2). To enter the ID and name of the new visual item the
dialog will appear (Fig.5.1.3). Enter the ID "2" and the name "Graphics 2".

Fig. 5.1.2. Adding the "Graphics 2" group of graphs.

Fig. 5.1.3. Input dialog of the ID and name.

Quick start OpenSCADA 154

After confirming the name input it will be created the new page. However, for its activation, we need to
enable it. You can enable this page in the dialog of the properties editing page (Fig.5.1.4). To open this
page it is possible by selecting the menu item 'Visual item properties" in the context menu of the newly
created page. New page, based at the template, you can create into the logical container by simple copy
template to internal self

Fig. 5.1.4. Dialogue of the properties editing of the visual element.

Quick start OpenSCADA 155

After enabling the page you are ready to set links to the created in the previous chapter parameters of
controllers. To do this, without leaving the dialog to edit the properties of the newly created page
(Fig.5.1.4), click on the "Links" tab (Fig.5.1.5). On this tab, we can see the tree with the elements "el1" ...
"el8". Unwinding any of the elements we'll see the "Parameter" branch, in this branch we need to specify or
select the address of our attributes "Ti" and "To". Total we will fill the four elements. When filling out the
elements the part of properties must be specified as constants. For example, it is necessarily needed to be
specified:

• name — "val:AT101_1 Ti".
• ed — "val:deg.C".
• max — "val:150" (for Ti) and "val:100" (for To).
• min — "val:0".

If you foresee the existence of the attributes specified in the controller parameter's template as constant,
it will be possible to specify only parameter, and the attributes will be set automatically, that you can see to
link created early typical analog parameter "ModBus.KM101.TE1314_1".

Fig. 5.1.5. The "Links" tab of the dialog of edit the properties of visual item.

Quick start OpenSCADA 156

Having finished the links entering, we can see the result of our efforts. To do this we'll close the editing
properties dialog and run the "Signal groups (template)" for execution, about the run button we remember
from the previous chapters. Then let's choose the graphics and switch to the second page. With error-free
configuration, we should see something similar to that shown in Fig.5.1.6. Note that for typical parameter,
with violations borders set, variable gone to the borders will cause marking by violations color. For see that
we can set performance cooler value to 100 (Fig.4.2.8).

Fig. 5.1.6. The created group of graphs with the four signals and one typical parameter linked.

Quick start OpenSCADA 157

 5.2. The creation of the new frame, the mnemonic scheme

Let's raise the bar and create the new frame, on which we'll put the basic elements of our controllers'
values displaying. Such frames are usually called the mnemonic schemes and in addition to the dynamics
displaying, and even in the first place, contain the static image of the technological process in the
mnemonic representation. We are not going to focus on the creation of statics and we'll add the dynamic
elements and link them to the parameters of our controllers. We'll put the created frame to the tree of
already known to us project.

New frames, destined later to be placed in the project, are to be created in the library of widgets. Let's
create the new library of widgets "KM101" by the selecting of the vertical tab "Widgets" and in the context
menu of the window of widgets' libraries click "New Library" (Fig.5.2.1). In the dialog of entering the
name we'll indicate the identifier "KM101" and the name "KM 101" and then confirm.

Fig. 5.2.1. Adding the new library of widgets.

Quick start OpenSCADA 158

Next we'll add the new frame "AT101" by selecting "Library: originals" -> "Elements box" in the
context menu of the created library "KM101" (Fig.5.2.2). In the dialog of entering the name we'll indicate
the identifier "AT101" and the name "AT 101" and then confirm. At the heart of any frame and the page
must be based on an element of "Elements box (Box)", and therefore we have chosen it.

Fig. 5.2.2. Adding the new frame.

Immediately after the creation of the new frame element it is necessary to set its basic properties,
characteristic to the mnemonic scheme frame. Properties or attributes of any visual element can be specified
in the toolbar "Attributes", having pre-selected the visual element. Let's select the created frame "AT 101"
and set the following properties:

• Geometry:width — "900".
• Geometry:height — "600".
• Page:group — "so", for the frame including to mnemo container allow, at run.
• Background:color — "#5A5A5A".
• Border:width — "1".
• Border:color — "black".

Quick start OpenSCADA 159

The result will be an empty frame (Fig.5.2.3), ready to add items to it. To edit or view the the frame you
should in the frame's context menu select the "Visual item edit".

Fig. 5.2.3. The view of the new frame and set attributes for the mnemonic scheme.

Quick start OpenSCADA 160

Now let's add on frame the elements for the value of the analog parameters displaying for our four
signals and typical parameter "ModBus.KM101.TE1314_1". To place an element for displaying an analog
signal to the mnemonic scheme it is necessary to select our mnemonic scheme, and then in the window's
menu to select the "Widget" -> "Library: Main" -> "Analog show" after which the cursor with an image of
this element will appear, which should be moving to the desired location on the mnemonic scheme and then
the left mouse button should be pressed. At the time of adding the dialog asking the name of the new
element will appear. We'll add this way the five elements which we'll call: "A1_Ti", "A1_To", "A2_Ti",
"A2_To" and "TE1314_1".

let's add on the frame the element of typical digital parameter, for that will use library's widget
"Widget"->"Library: mnEls"->"Ball crane" and next call it "KSH102".

For list of current violations display let's place on the frame the protocol element from the primitives
library "Widget"->"Library: originals"->"Protocol" and next call it "Protocol". For the protocol element will
set properties into the attributes inspector:

• Geometry:width — "500".
• Geometry:height — "250".
• View columns — "tm;lev;mess".
• Level — "-1", for any level violations display.
• Size, sek — "0", for any depth violatons display.
• Tracing period (s) — "1".

The added elements can be subsequently positioned as needed by simply selecting and dragging them by
the mouse. After such manipulations, we should get the mnemonic scheme with the view, similar to
Fig.5.2.4.

Fig. 5.2.4. The view of the new frame and set attributes for the mnemonic scheme.

This procedure of the creating the mnemonic scheme we'll consider to be finished. Save the new library
of widgets "KM101" and proceed to the stage of the placing our mnemonic scheme in the project's tree of
"Signal groups (template)".

Let's put our mnemonic scheme to the branch of the "Signal groups (template"->"Root page (SO)"-
>"Group 1"->"Mnemos" by selecting in the context menu for the "Mnemos" item the item "Library:

Quick start OpenSCADA 161

KM101"->"AT 101". The identifier for the new mnemonic scheme let's set to "2" and the name field let's
leave blank.

Next you need to make an already familiar to us the operation from the previous chapter, namely the
setting of links to the created in the previous chapter the parameters of controllers. To do this let's open the
dialogue of the properties editing of the mnemonic scheme on the "Links" tab (Fig.5.2.5). On this tab, we'll
see the tree with the elements of "A1_Ti", "A1_To", "A2_Ti" and "A2_To". Unwinding any of the
elements, we'll see the "Parameter" branch, in this branch we are to specify or select the address of our
attributes "Ti" and "To", respectively. When filling out the elements the part of the properties must be
specified as constants. For example, necessarily must be specified:

• pName — "val:AT101_1 Ti".

As in case with graphics group in previous chapter for typical parameters "ModBus.KM101.TE1314_1"
and "ModBus.KM101.KSH102" you can set only the parameter and attributes will assign automatic.

Fig. 5.2.5. The "Links" tab of dialog of editing the properties of the mnemonic scheme.

Quick start OpenSCADA 162

Now we can save our mnemonic scheme and verify what we have. To do this, we'll close the properties
dialog and run the "Signal groups (template)" for execution. Then switch to the second mnemonic scheme
by the paging buttons. With error-free configuration, we should see something similar to that shown in
Fig.5.2.6.

Fig. 5.2.6. The created mnemonic scheme with four linked signals, typical parameters and the protocol.

Note for you, the typical parameter variable going beyond violation borders set will mark by flashing
through alarm color: the parameter, the signal object and the yellow circle bottom. On the violation also
will cause boozer cheep and speech synthesis (if set and configured program "ru_tts" or other) from the
parameter position text into link field "spName" (рис. 5.2.5). On the violation will set active the indication
buttons on the right and right-bottom, and to press the button will accorded type notification make cvitation.
On flashing yellow circle on the right-bottom press will cvitation for all. Any violation allowing fact will
noted into the protocol, which we have appended. To see going beyond one violation border we can set the
cooler productivity to 100 (Fig.4.2.8). About working with violations concept you can detailed read into
chapter "Recipes".

Quick start OpenSCADA 163

http://wiki.oscada.org/HomePageEn/Doc/QuickStart?v=wpp#h995-31

Violations history you can see into document "Protocol of violations", which allowed on the display
view "Document" select (Fig.5.2.7).

Fig. 5.2.7. Alarms document.

Quick start OpenSCADA 164

The digital typical parameter "ModBus.KM101.KSH102", displayed by ball crane, is active then you can
select it and get control panel on the right (Fig.5.2.6), and also send commands (open or close). The
commands you can doing to the control panel or context menu. All operator's control interruptions will
noted into protocols and the document for its you can see on the display view "Document" select
(Fig.5.2.8).

Fig. 5.2.7. The operator interruptions protocol.

Quick start OpenSCADA 165

 5.3. Creation of the new complex element

Let's proceed to the objectives of the third level of complexity, namely the creation of an complex
element. Creating of the new complex element, which includes a combination of basic primitives, can be
made in several stages. As an example, let's examine the task, consisting of two stages:

• Creation the widget "Air cooler" on the basis of the primitive "Elementary figures".
• Creation the final grouped widget "Cooler" based on the primitive "Elements box".

 5.3.1. Creation the widget "Air cooler" on the basis of the primitive "Elementary figures".

The widget will be created in our previously made library "KM101". To do this we'll make right mouse
button click on this library and select the item "Library: originals"->"Elementary figures", as it is shown in
Figure 5.3.1.1. For a new element let's write the "air_cooler" identifier and the name "Air cooler".

Fig. 5.3.1.1. Adding the widget based on the primitive "Elementary figures" to the "KM101" library.

Quick start OpenSCADA 166

After confirmation, we will have a new widget's object with the name "Air cooler". Select it in the
widget library "KM101" and open for editing via the context menu of the new element (Fig. 5.3.1.2). Let is
set properties into attributes inspector:

• Geometry:width — "200".
• Geometry:height — "200".
• Fill:color — "lightgrey". Color may set, as with help colors names, and also in format
#RRGGBB (#RRGGBB-AAA).

Fig. 5.3.1.2. First widget configuration.

Now let's draw the visual presentation of the widget. This procedure can be done in two ways described
below:

• To draw the desired image by the mouse, using the "Line", "Arc", "Bezier curve" and "Fill." The
corresponding panel ("Elementary figure tools") appears after entering the edit mode (drawing). To
enter this mode it is possible as shown it is shown in Fig. 5.3.1.3, or by double clicking the left
mouse button on the body of the widget.
• Manually fill in the "Elements' list", by entering the list of required elements and coordinates of
points.

More information about the editor you can get here:
http://wiki.oscada.org/HomePageEn/Doc/Vision/ElFigure

Quick start OpenSCADA 167

http://wiki.oscada.org/HomePageEn/Doc/Vision/ElFigure
http://www.w3.org/TR/SVG/types.html#ColorKeywords

Fig. 5.3.1.3. Entrance to the mode of drawing the widget, based on the primitive "Elementary figures."

In our example, we'll use the second method. To do this in the "Elements' list" of the attributes inspector
let's enter the list below and press "Ctrl" + "Enter".

line:(20|80):(100|20)
line:(100|20):(180|80)
line:(180|80):(100|140)
line:(100|140):(20|80)
line:(100|20):(100|140)
line:(20|80):(180|80)
line:(50|165):(100|140)
line:(100|140):(150|165)
line:(150|165):(50|165)
fill:(20|80):(100|20):(180|80):(100|140)
fill:(50|165):(100|140):(150|165)

All the points in our case are specified in the static form, since it is not provided the dynamics and
change of coordinates in the mode of execution, and all the other parameters are left by default.

Quick start OpenSCADA 168

As a consequence, our widget will take the form shown in Fig. 5.3.1.4.

Fig. 5.3.1.4. The image corresponding to the "Elements' list" of the widget.

Quick start OpenSCADA 169

Let's create an icon for our widget, which will be visible in the widgets' tree of the library "KM101"
(Figure 5.3.1.5).

Fig. 5.3.1.5. Creating an icon for the widget.

The process of creating the first widget is completed. We'll now turn to the stage of layout and the
creation of the resulting widget.

Quick start OpenSCADA 170

 5.3.2. Creation the final complex widget "Cooler" on the basis of the primitive "Elements box"

The resulting widget we'll create in the "KM 101" library. To do this we must click the right mouse
button on the library and select the primitive "Elements box", as it is shown in Figure 5.3.2.1. For a new
element let's specify the identifier "elCooler" and the name of "Cooler".

Fig. 5.3.2.1. Adding the widget based on the primitive "Elements box" to the "KM 101" library.

After confirmation, we'll have the new widget object with the name "Cooler". Select it in the widget
library "KM 101" and open for editing. Let is set properties into attributes inspector:

• Geometry:width — "250".
• Geometry:height — "200".

Quick start OpenSCADA 171

Let's take the previously created element "Air cooler" (air_cooler) and drag him (clicking on it by the left
mouse button and moving the cursor of the mouse to the body of the widget, then let the button) to the
newly created widget (see Figure 5.3.2.2).

Fig. 5.3.2.2. Drag and Drop of the widget "air_cooler" to the widget-container "elCooler".

Quick start OpenSCADA 172

The dialogue window will appear to enter the ID and name of the new widget. ID and the name can be
set arbitrarily. We will input the "air_cooler" ID and the name we'll leave blank (it will be inherited from
parent - the element "air_cooler"). Thus, the newly-created widget inside the container "elCooler" inherits
the element - "Air cooler" ("air_cooler"). After confirming the entry of ID and name the widget "Air
cooler" ("air_cooler") will be added to our widget container "elCooler" (Figure 5.3.2.3). Let is set properties
into attributes inspector:

• Geometry:x — "25".
• Geometry:y — "0".

Fig. 5.3.2.3. Adding the inherited widget "air_cooler".

Next, unwind the library "Mnemo elements", find there the "Cooler" element (cooler2) and drag it to the
widget-container. This element will dynamically display the productivity of the air cooler. As the result it
will appear the dialog window for entering the ID and name of the new widget. Enter the ID "cooler2" and
the name again let's leave blank. Thus, the newly-created widget inside the container "elCooler" will inherit
the element of the library "Mnemo elements" - "Cooler" ("cooler2"). After confirming the entry of the ID
and name the widget "Cooler" ("cooler2") will be added to our widget-container "elCooler". Let is set
properties into attributes inspector:

• Geometry:x — "75".
• Geometry:y — "30".
• Geometry:z — "10". Raise the widget over all you can from panel "Widgets view functions".

Quick start OpenSCADA 173

• Color1 — "#FFFF00-200", we have added the value of transparency 200 ("0" - fully transparent,
while "255" - the fully opaque), as it is shown in Fig. 5.3.2.4.
• Color2 — "#FF0000-200", we have added the value of transparency 200.

Fig. 5.3.2.4. Change the fill colors transparency in the inherited widget "cooler2".

Now let's add to the widget-container "elCooler" two text fields based on the primitive "Text", in order
to display the input and output temperatures of the flow. To do this in the library "KM 101" we'll select the
widget "Cooler" and then click on the visual items toolbar on the icon of the primitive "Text", as it is shown
in Figure 5.3.2.5. The dialog of the ID and name of the newly created element entering will appear. Enter
the ID "Ti" for the first text field, and the name field we'll leave blank. Let is set properties into attributes
inspector:

• Geometry:x — "5".
• Geometry:y — "20".
• Geometry:ширина — "70".
• Geometry:высота — "35".
• Alignment — "Center".
• Font — "Arial 14 1". Font selection you can do into the dialog which opened at press on the key
into edit field (Fig. 5.3.2.7).
• Text — "%1{Enter}deg.C" (Fig. 5.3.2.8). {Enter} — move to next line.
• Arguments number — "1" (Fig. 5.3.2.9):

Quick start OpenSCADA 174

• Argument 0:type — "Real".
• Argument 0:value — "300.25", the number "300.25" is entered only the with the purpose
of clarity, in the execution mode it will be changed by the real value of the input temperature.
• Аргумент 0:config — "3;f;2".

Fig. 5.3.2.5. Adding the new element to the container, based on the primitive "Text."

Quick start OpenSCADA 175

Fig. 5.3.2.6. Specifying the geometry of the widget "Ti".

Fig. 5.3.2.7. Changing the font size for the widget "Ti".

Quick start OpenSCADA 176

Fig. 5.3.2.8. Changing the field "Text" and an indication of the argument's presence in it for the widget

"Ti".

Fig. 5.3.2.9. The configuration of the argument for the "Ti" widget.

Quick start OpenSCADA 177

Now we'll copy the "Ti" widget in order to create an equivalent widget "To" (output temperature). Let's
paste the widget, in the dialog of the ID and the name entering for the newly created widget in the field
"ID" we'll write "To", and the name field we'll leave blank (Fig. 5.3.2.10). Let is set properties into
attributes inspector:

• Geometry:x — "175".
• Geometry:y — "20".

Fig. 5.3.2.10. The "To" widget.

Quick start OpenSCADA 178

Now let's add the widget based on the primitive "Form's elements" (Fig. 5.3.2.11), which will be used as
the ComboBox to select the productivity values of the cooler. The identifier will be "cw", and the "Name"
field we'll leave blank (Fig. 5.3.2.12). Let is set properties into attributes inspector:

• Active — "true".
• Geometry:x — "60".
• Geometry:y — "158".
• Geometry:z — "10". Raise the widget over all you can from panel "Widgets view functions".
• Geometry:width — "60".
• Geometry:height — "40".
• Element type — "Combo Box".
• Font — "Arial 14 1".
• Value — "200".
• Configuration — "0{Enter}50{Enter}100{Enter}150{Enter}200". {Enter} — move to next line.

Fig. 5.3.2.11. Adding the widget based on the primitive "Form's elements".

Quick start OpenSCADA 179

Fig. 5.3.2.12. Filling the parameters of the "cw" ComboBox.

Quick start OpenSCADA 180

To display the cooler productivity dimensions we'll add the widget on the basis of the "Text" primitive.
Let's make the same procedure as for the "Ti" widget. The identifier of the newly created widget will be
"dimension" (Fig. 5.3.2.13). Let is set properties into attributes inspector:

• Geometry:x — "125".
• Geometry:y — "168".
• Geometry:width — "60".
• Geometry:height — "20".
• Alignment — "Center".
• Font — "Arial 14 1".
• Text — "rpm".

Fig. 5.3.2.13. Adding the "dimension" widget, based on the primitive "Text" and changing of its settings.

Quick start OpenSCADA 181

To add the processing logics for the widget "Cooler" (elCooler) we'll open the dialog of the properties
editing of the visual element and select the "Process" tab. On this tab we can see the tree of widget's
attributes and the field for the program code for the attributes' processing. To solve our task, we must add
three attributes: Ti, To, Cw (Fig. 5.3.2.14). To add an attribute you should unwind the root element ".",
select any element inside the root one and click "Add attribute" button below.

Further we'll enable the processing of "value" attribute of combo box "cw", as it is shown in Fig.
5.3.2.15. Similarly, enable the processing of the "arg0val" attribute for Ti and To, as well as the "speed"
attribute of the "cooler2" element.

Fig. 5.3.2.14. Adding the three attributes for the element "elCooler" of the library "KM 101".

Fig. 5.3.2.15. The enabling of the processing of the "value" attribute of the combo box "cw".

Quick start OpenSCADA 182

At the end let's set the user programming language for the program to the "JavaLikeCalc.JavaScript" and
write the program to process this widget:

Ti_arg0val = Ti;
To_arg0val = To;

ev_wrk = ev_rez = "";
off = 0;
while(true)
{
 ev_wrk = Special.FLibSYS.strParse(event,0,"\n",off);
 if(ev_wrk == "") break;
 if(ev_wrk == "ws_CombChange:/cw") Cw = cw_value;
 else ev_rez += ev_wrk+"\n";
}
cw_value = Cw;
cooler2_speed = Cw/5;

 Place or edit the widget program does not make its compilation, and therefore no error
messages in the program if they have a place to be. This is due to the fact that the immediate
execution of the program and, hence, its compilation is carried out in the surroundings and the
moment of launch to project execution visualization. In this case any errors during compilation are
displayed in a message OpenSCADA, widgets with errors and not executed. View to messages
archive OpenSCADA you can in the main tab of the subsystem "Archives" or in a terminal run
OpenSCADA, if the launch was from the terminal or emulator.

Quick start OpenSCADA 183

http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual?v=ksv#h932-7

The resulting view of the Process tab of the "elCooler" widget of the "KM 101" library will have the
form shown in Fig. 5.3.2.16.

 Fig.
5.3.2.16. The resulting view of the Process tab of the "elCooler" widget of the "KM 101" library.

Let's close the dialogue of the properties of visual element editing, create an icon on the basis of our
element, close the inner editing window and save it all.

The development of the complex element is finished.

Quick start OpenSCADA 184

 5.3.3. Adding the complex element to the mnemonic scheme

To test the operability and evaluate the results of our efforts let's add the created widget to the mnemonic
scheme, developed in chapter 5.2. We'll repeat this operation for two coolers "AT101_1" and "AT101_2".

To do this we'll open the frame of mnemonic scheme "AT 101" for editing. Then grab by the "mouse"
our complex element and drag to mnemonic scheme, where we drop it in the desired position. In the dialog
we'll enter the identifiers "AT101_1" and "AT101_2" respectively. The field "Name" is blank. Added
element we'll place the way we desire. After such manipulations, we should get the mnemonic scheme with
the view, similar to Fig.5.3.3.1.

Fig. 5.3.3.1. The view of the mnemonic scheme with complex elements.

Quick start OpenSCADA 185

Let's save the new mnemonic scheme and close its window. Then move on to the project and open this
mnemonic scheme in the project's tree "Signal groups (template)"->"Root page (SO)"->"Group 1"-
>"Mnemos"->"AT 101". As you can see, our new elements are appeared here automatically. And we only
need to connect the links to the new elements. To do this we'll open the dialog of editing the properties of
the mnemonic scheme on the "Links" tab (Fig.5.3.3.2). On this tab, we can see the tree with the elements of
"AT101_1" and "AT101_2". Unwinding any of the elements, we'll see the "Parameter" branch just with the
"Ti", "To" and "Cw" attributes, thus we can simply specify the address of the parameter
"prm:/LogicLev/KM101/AT101_1" in the "Parameter" field and attributes will be placed automatically.

Fig. 5.3.3.2. The "Links" tab of the dialog of editing the properties of the mnemonic scheme.

Quick start OpenSCADA 186

Let's save our mnemonic scheme and verify what we have. To do this, close the dialog of the properties
and run the "Signal groups (template)" for execution. Then switch to the second mnemonic scheme with the
help of paging buttons. With error-free configuration, we should see something similar to that shown in
Fig.5.3.3.3.

Fig. 5.3.3.3. The resulting mnemonic scheme.

On this mnemonic scheme through our complex elements we can not only observe but also to control the
productivity of coolers, simply by changing the value in the combo box. Changing the productivity, we can
see the changes in temperature and alarms for analog typed parameter. History of changes we can see on the
created in the chapter 5.1 the group of graphs.

Quick start OpenSCADA 187

 6. Recipes
This section is intended to provide the descriptions of recipes for solving the common problems and

tasks of the user. Recipes to be placed in this section may be offered by the users.

 6.1. Transfer of OpenSCADA configurations from one project to another

It is often needed to transfer configuration from one OpenSCADA project to another. And, more often it
is necessary to make a partial transfer, for example, the transfer of certain developments that could be
useful in the new project.

Generally, it should be noted that any developments with the slightest hint, and the prospect of re-use
should be standardized and maintained in the separate, own libraries and databases. It is not recommended
to change the default configurations and elements of the standard libraries, and save your own, new
libraries and elements in the databases of standard libraries. This will subsequently allow you to painlessly
update the standard libraries, and to simply use the developments of your previous projects.

Easy transfer of the DB with libraries and configuration

If you took into account the above recommendations and all of your uniform developments are contained
in the separate database, then the entire transfer process will be to copy the database and connect it to a new
project.

The procedure of DB copying is different for different types of databases and you should read about it in
the DB documentation. In the OpenSCADA distros it is commonly used the SQLite database, as separate
files *.db. Сopying of the SQLite database, respectively, is the simple copying of the the required database
file from the database directory of the old project to the database directory of the new one.

Connection is made by creating a new database object in the module of the required DB type of the
database subsystem and its subsequent configuration (in details). After the creation, configuration, and the
enabling of database you can immediately download the configuration from it by clicking the "Load system
from this DB" on the form of the database object.

Separation of the desired configuration

If the desired configuration is contained in a common database or in the database of standard libraries,
you need to move it to the separate database. You can move the configuration either to a separate database
with your libraries or to the export database. Export database, unlike a library one, only serves to transfer
the configuration and will subsequently be deleted. In any case, you must create a new database for the
desired database type, like the connection procedure above. To transfer you should use a database type that
you plan to use in the new project. Usually, it is better to use the SQLite database type for the transfer,
because of the simple copying procedure for it. However, if you use a network database, the procedure may
change to the simple connection of the library or export database to a new project.

Next, you must separate the configuration in unifying or export libraries, if it can not be directly stored
in a database. For example, certain templates of parameters or parameters of the data acquisition
controllers, visual elements of the widgets libraries etc. You can separate by creating a library of export or
by the unification of the element, such as a library of templates, or the controller of the data acquisition
parameters, library of widgets etc. For the newly created library as the database should be specified the
previously created unifying or export database. Further you should copy the necessary elements from the
original library to unifying/export via a standard copy function. After copying the unifying/export library
must be saved.

If it is necessary to transfer the configuration element with a separate DB property or the entire libraries
the operation of creating an intermediate library and the further copying can be omitted. It is enough in the
DB field to specify the previously created a unifying or export database and save the element.

Further actions, namely the simple transfer of the database, are implemented in accordance with the
previous section.

Quick start OpenSCADA 188

http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual#h932-2

When you transfer the configuration by exporting it is necessary to implement the reverse process of
copying from the export libraries to the local libraries of a new project and deleting of the export database.

Low-level copy of the DB contents

To transfer you can make selectively copying of the database tables with the configuration by selecting
the tables' objects in the database object, the copy command, the selecting of the object of a new database
and insert command (in details). However, it is necessary to know the structure of the database, about
which you can read by this link.

 6.2. Cyclic programming into OpenSCADA particularity

Novice users often have question about time intervals hold while programming calculation procedures in
the OpenSCADA environment. This question is usually associated with the presence of previous
programming experience in linear calculations and lack of experience in programming of cyclic real-time
systems.

The so-called tact or cycle of periodical calculations, ie the life rhythm is used in the real-time systems.
Some procedure is calculated in each cycle that should not take more time than the cycle. As a
consequence, if the cycle procedure stops for waiting, the life of the real-time system stops too. Hence, the
using of traditional sleep task functions into such procedures is unacceptable!

The solution of the desired exposure time interval in the real-time systems, within the rhythm of life, is
made in two ways. The first way is to decrement the counter value, set to the time interval, in each cycle by
the cycle frequency to the value <= 0, for example, in OpenSCADA it is implemented as follows:

if((tm_cnt-=1/f_frq) <= 0) //Decrement
{
 tm_cnt = 10; //Set the counter to a value of 10 seconds
 //Other actions with the periodicity of 10 seconds
}

The second way is based on the astronomical time, ie the comparison with the current time is made in
the cycle, for example, in OpenSCADA it is implemented as follows:

if(SYS.time() > tm_to)
{
 tm_to = SYS.time()+10; //Setting the waiting threshold for 10 seconds more
than the current time
 //Other actions with the periodicity of 10 seconds
}

The second method is more reliable because it excludes the operation delay problem due to the
possibility of calculating the cycle procedure over the cycle time. Although in the properly configured
systems and tasks, this problem should not occur.

Quick start OpenSCADA 189

http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual#h932-2
http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual#h932-2

 6.3. Live disk (Live CD/USB)

In order to simplify the OpenSCADA deployment, you can use live builds of bootable CD and USB.
Live disk provides the ability to boot directly from it and quickly to obtain the desired working
environment. During booting and operating a live disk does not use regular data storages, which means you
can not worry about the integrity and security of data on them. In general, a live disk is a convinient tool
with a wide range of necessary software tools, independent from the stationary software environment, and
capable to make diagnostics of software and hardware environment, and their restoration in some cases.

Live disk is a packaged image of the operating system and applications with a size of about 700MB,
recorded on CD/DVD drive or USB-Flash drive. During the operation the operating system "on the fly"
unpacks the files needed to run programs and open documents, and therefore does not use memory more
than at its usual installation.

The live disks with OpenSCADA built into several variants based on distributive ОS Linux
ALTLinux and allowed for download to accorded OpenSCADA version here:
http://oscada.org/en/download. Modern live build with OpenSCADA have much more functions than have
been planed originally:

• Saving work changes transparently, on writing to USB-Flash. The feature achieved by creation
disk's partition to write, on free USB-Flash space. The partion mirrored to file system's root and all
modifications will write to it. Besides work data saving to the partition you can install need program
packages from repository ALTLinux (last P6 and T6).
• Combination typical data and live Flash-disk. The feature achieved by writing the live disk's
image direct to USB-Flash file system, FAT16 or FAT32, that preserves typical data storage's
functions and append live-disk function.
• The live disk environment installation to stationary data storage (HDD). That allow for you do
not deeply learning to operation system Linux on it installation, configuration, and also
OpenSCADA deployment. You enough to load from the live disk, to check for all hardware correct
detection and all need program work, then to install to HDD, by simple procedure aid from the icon
on desktop. The resulting installation will exactly repeat the live disk environment.

ISO-image of the live CD

The first variant of a live CD building is the ISO-image (*LiveCD_USB.iso) for writing to CD/DVD,
but it is also combined and can be written directly to the USB-Flash drive.

For the ISO-image record to CD/DVD, you can use standard tools of the original operating system.
Writing to USB-Falsh can only be done from the environment of Linux, for example, from the environment
of this live disc, recorded and booted previously with CD/DVD drive.

 The user, who has no experience with Linux should only burn the CD/DVD and start to get
acquainted with Linux, if he wants to get a live USB-Flash drive.

 Burn the image to the USB-Flash will destroy all the data and make it unfit for usage as a data
storage, except the possibility of recording the changes to the storage section of the live disk OS
environment that is created when you first boot from the live disk.

Address of the disk for ISO-image record is "/dev/sd{x}", and it can be found by the console command
"$ dmesg", immediately after you connect the target USB-Flash drive. For the ISO-image record to the
USB-Flash from the Linux environment you can use the following command:

$ dd if=ALTLinux_6-OpenSCADA_0.8.0-TDE_3.5.13-i586-LiveCD_USB.iso of=/dev/sd{x} bs=4096
#The record directly from the booted CD/DVD disc
$ dd if=/dev/sr0 of=/dev/sd{x} bs=4096

Quick start OpenSCADA 190

http://oscada.org/en/download
http://www.altlinux.com/
http://www.altlinux.com/
http://oscada.org/en/download

FAT-image of the live disk

The second variant of the live disk building is a FAT-image: a group of files for the direct recording and
uploading from the FAT-partition (*flash.tar). The advantage of this building, as it was previously
mentioned, is a combination of USB-Flash drive features as a data storage and as a live disc at the same
time. Also on the basis of this building, you can create compact, reliable and functional solutions of the
embedded systems based on OpenSCADA, such as Programmable Logic Controllers (PLC), the panel
controllers (with a touch screen), as well as simple SCADA-servers and operator's "quickly made"
SCADA-stations, by recording a live disk to the stationary data storage (HDD, SSD or Flash). The
reliability of this solution is achieved by placing the main non-modifiable software in the packed file, and
operational data on the journaled file system.

The record of such image can be done from any operating system, but to install the bootloader it is
possible only from Linux, for which you can use the LiveCD from the previous section.

The procedure for creating a live disk has the following steps:

Connect the target disk, find out ist address and
mount it, all operation should be done from root:
$ su -
$ dmesg
$ mkdir /mnt/tmp; mount /dev/sd{x}1 /mnt/tmp
Unpack the contents of an archive on the mounted disk:
$ cd /mnt/tmp
$ tar xvf /var/tmp/ALTLinux_6-OpenSCADA_0.8.0-TDE_3.5.13-i586-flash.tar
Find out the UUID for the filesystem of the target disk:
$ blkid | grep /dev/sd{x}1
Modify the file /mnt/tmp/syslinux/syslinux.cfg at the end of the line
"append initrd=alt0/full.cz live ... disk, uuid:4EB3-0478",
UUID where it is necessary to indicate the previously obtained UUID
Add or modify the file "/mnt/tmp/syslinux/lang" for specifying
the locale-language of the interface by default,
for the Russian language it is necessary to specify "ru_RU",
otherwise it will be English.
Unmount the disk:
$ umount /dev/sd{x}1
Initialize the MBR of the disk to the correct value:
$ ms-sys -s /dev/sd{x}
Initialize the boot loader:
$ syslinux /dev/sd{x}1

 This method of the live disk creation requires knowledge of Linux and command line interface
(console), as well as the basics of the disks partitioning because with an wrong initial partitioning of
media the booting may not be passed. In addition, to ensure the function of transparent changes saving
it is necessary to create the partition labeled "alt-live-storage" and the file system ext3, this can be done
in the program-manager of the partitions, for example, "gparted".

Quick start OpenSCADA 191

Booting

To boot from the live disk the computer should be rebooted and then you should press the key to enter
the BIOS boot menu at the very start of the boot and choose there our disk (Fig.6.3.1). The key to enter the
boot menu may be different on the different computers and may be one of the following: "F8", "F9", "F10",
"F11" or "F12".

Fig. 6.3.1. Boot device selection dialog in BIOS.

Quick start OpenSCADA 192

After the selection of the the device you should see the boot menu of live disk, where it is important to
pre-select your language by pressing F2 (Fig.6.3.2) if the default language is not the desired one.

Fig. 6.3.2. Live disk's language selection menu.

Quick start OpenSCADA 193

As a result of booting from the live disc, you'll get a desktop of the TDE 3.5.13 (Fig.6.3.3).

Fig. 6.3.3. Live disk's working desktop.

Quick start OpenSCADA 194

 6.4. General provisions of the working conception with violations, alarms and
notifications

Alarms and their processing in OpenSCADA is implemented in two ways, which is associated with the
OpenSCADA structure, ways of its usage, as well as with the nature of alarms.

The first part of alarms, with which the OpenSCADA works initially, and which is most needed, is
notifications in various ways. Since the notification is part of the visualization interface, they are
implemented in the VCA engine UI.VCAEngine and in the visualizers UI.Vision, UI.WebVision.
Currently, notifications and alarms OpenSCADA subsystem implements the following functions:

• Notification:
• Light — blinking of the object, the signaling group, the general status with the alarm
color.
• Sound — playing the sound file, or speech synthesis from text, associated with the alarm;
• Beep — a continuous signal to the system, "Beeper", regardless of the alarm.

• Quittance of the alarm notification:
• Full — by clicking on the colored blinking circle of the alarm status (the "ws_alarmLev"
event), bottom right:
• By the notification way — separate the light (the event "ws_alarmLight"), sound (event
"ws_alarmSound") and the beep (the event "ws_alarmAlarm"), by pressing a button with the
corresponding image, bottom right, or under the buttons of display options;
• By the alarm object — to the visual presentation image it can be added the quittance
command of the notification directly by itself;
• Alternately with listening — it is character of the sound notification, because every alarm
object can provide its own sound notification or the speech synthesis.

During the implementation of the notifications in the visualization area there is no direct rule for the
formation of alarm sign because in many situations there is no uniqueness. Currently, on the side of the
typified data source templates, it is practiced a method of the formation an "err" error attribute with the
code and text of the alarm, and their processing and the formation of notification is made in the visual
image of the data object. Sometimes the processing the parameter's borders is made directly in the visual
image of the data object.

Subsequently, it became necessary to log and record the actual alarms for the current moment. For the
alarms logging it is sufficient the formation of system messages with the specified category and message
format, but for the monitoring the ongoing(actual) alarms a buffer is needed. Subsequently, a buffer was
added as an add-on of the messages subsystem, and its addressing is made by the inversion of the message
level. So, the message record with the level "-2" and the category "TEST" will put the message into the
alarm buffer and duplicate it in the messages archive, with the level of "2". At the messages request with
the negative level they will be taken from the alarm buffer. Deleting/removing of the alarm is made by
writing the messages with the same category "TEST" and the non-negative level.

This concept of accounting the actual alarms allows you to use standard mechanisms for the messages
processing to account the alarms:

• Alarm registration: SYS.message("alCategory", -3, "Parameter: alarm");
• Removing of the alarm: SYS.message("alCategory", 1, "Parameter: normal");
• Creating a list of actual (active) alarms by means of the "Protocol" or "Document" elements with
the "-1" negative level for all.

Messages registration is best done on the side of the typified data source templates by a special function
"SYS.DAQ["Modul"]["Controller"].alarmSet(string mess, int lev = -5, string prm = "")", which
unifies the category. To call this function from the context of the template you need to add "this" IO of the
"Object" type, then the set of the alarm would be of the following form
"this.nodePrev().alarmSet("Parameter: alarm", -5, "prm");". This function is now used in many data
sources modules to account the global alarms of the controllers objects. The function creates the alarm with
the category: al{ModId}:{CntrId}[.{PrmId}], where:

• ModId — module's ID;
• CntrId — controller's ID;

Quick start OpenSCADA 195

http://wiki.oscada.org/HomePageEn/Doc/WebVision?v=1dju
http://wiki.oscada.org/HomePageEn/Doc/Vision?v=te1
http://wiki.oscada.org/HomePageEn/Doc/VCAEngine?v=rv2

• PrmId — parameter's ID from the <prm> argument.

In general, it should be noted that the notification and alarms registration are different mechanisms that
can be used individually for simple projects, or together for large complex projects.

Conclusion
This document describes in detail the basic process of creating the user interface elements, with

preparation and configuration of the data source. In general, you can quickly get an idea of the work with
the OpenSCADA system, and purposefully look for solutions of associated problems.

Quick start OpenSCADA 196

Library of models of technological devices
Name: TechApp
Founded: october 2005
Version: 0.9.0
State: Free (GPL)
Author: Roman Savochenko, Maxim Lysenko, Ksenia Yashina
Description: Provides the library of models of technological devices.
Address: DB in file: SQLite.LibDB.techApp (oscadalibs.db.gz)

The library is created to provide the models of devices of technological processes. The library is not
static, but based on the module JavaLikeCalc, allowing to create calculations on the Java-like language.

To address the functions of the library you can use static call address
"DAQ.JavaLikeCalc.lib_techApp.{Func}()" or dynamic "SYS.DAQ.JavaLikeCalc["lib_techApp"]
["{Func}"].call()", "SYS.DAQ.JavaLikeCalc["lib_techApp"].{Func}()". Where {Func} — function
identifier in the library.

To connect the library to the project of the OpenSCADA station it is possible by downloading the
attached file of the database, placing it in in the database directory of the station's project and creating the
database object for the DB module "SQLite", indicating the database file in the configuration.

For each function it was evaluated the execution time. Measurements were made on the system with the
following parameters: Athlon 64 3000 + (2000MGts) + ALTLinux 5.1, 32bit by measuring the total
execution time of the function when you call it 1000 times. Selection was made for the smallest value of the
five computations. Time is in angle brackets and is measured in microseconds.

1 Conception
The basis of the model of each unit is the calculation of the input flow and output pressure based on the

input pressure and output flow. In general, models of technological devices are described by difference
equations for discrete machines.

Based on the functions of this library you can easily and quickly build models of technological processes
in the module BlockCalc by combining the blocks in accordance with the technological scheme. Example
of combination of several devices of the technological scheme is shown in Fig. 1.

Fig. 1. An example of the block scheme of the technological process.

The basis of the model of any technological device are two basic formulas, namely the formula of flow
and pressure. The canonical formula of the flow computation for the pipe section, or restriction of flow area
is given by (1).

 (1)
Where:

F — mass flow (t/hour).
S — section (m2).
Qr — real density of the medium (kg/m3).
∆P — pressure drop (at).

The actual density is calculated by the formula (2).

 (2)

Library of models of technological devices 197

http://wiki.oscada.org/HomePageEn/Doc/BlockCalc?v=jvr
http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc?v=1b5x
http://wiki.oscada.org/Using/APIFunctionLibs/files?get=oscadalibs.db.gz
http://wiki.oscada.org/YashinaKsenia?v=139q
http://wiki.oscada.org/MaximLysenko?v=2iq
http://wiki.oscada.org/RomanSavochenko?v=blo

Where:
Q0 — density of the medium under normal conditions (kg/m3).
Kpr — coefficient of compressibility of the medium (0,001 — liquid; 0,95 — gas).
Pi — input pressure (at).

Each tube makes the dynamic resistance to the flow associated with the friction of the pipe walls and that
depends on the flow velocity. The dynamic resistance of the pipe is expressed by (3). The total flow of the
medium, taking into account the dynamic resistance is calculated by formula (4).

 (3)

Where:
∆P — pressure drop (at), the resistance of the pipe walls to flow of the medium.
Kr — coefficient of friction of the walls of the pipe.
D — diameter of the pipeline (m).
l — pipeline length (m).
v — flow velocity in the pipeline (m3/hour).

 (4)

Equation (1) describes the laminar outflow of medium to critical velocities. In the case of exceeding the
critical flow velocity the calculation is made by the formula (5). A universal formula for calculating the
flow at all speeds will have the formula (6).

 (5)
Where:

Pi — pressure at the beginning of the pipe.

 (6)

Where:
Po — pressure at the end of the pipe.

In dynamical systems the change of the flow at the end of the pipe does not change instantaneously, but
lags behind the time travel of the medium plot from the beginning of the pipeline to its end. The time
depends on the length of the pipe and velocity of the medium in the pipe. Delay of the flow changing at the
end of the pipe can be described by formula (7). The resulting formula for calculating of the the flow in the
pipe, taking into account the above features, written in the form (8).

 (7)

Where:
Fo — flow at the end of the pipe.
t — time.
v — velocity of the flow = F/(Qr*S).

 (8)

The pressure of the medium in the volume is usually calculated identically for all cases by formula (9).

 (9)

Library of models of technological devices 198

2 The library structure
The library contains about two dozen of models of the often needed technological processes devices and

supporting elements. The functions' names and its parameters are available in three languages: English,
Russian and Ukrainian.

Lag (lag) <1.2>

Description: Lag model. You can use this for sensors' variables lag imitation.

Parameters:
ID Parameter Type Mode Hide Default

out Output Real Return false 0
in Input Real Input false 0
t_lg Lag time (s) Real Input false 10
f_frq Calc frequency (Hz) Real Input true 100

Program:
out-=(out-in)/(t_lg*f_frq);

Noise (2 harmonic + rand) (noise) <3.5>

Description: Noise model. Contain three parts:
• first harmonic part;
• second harmonic part;
• noise based on randomize generator of numbers.

Parameters:
ID Parameter Type Mode Hide Default

out Output Real Return false 0
off Main offset Real Input false 1
a_g1 Harmonic part 1 amplitude Real Input false 10
per_g1 Harmonic part 1 period (s) Real Input false 10
a_g2 Harmonic part 2 amplitude Real Input false 5
per_g2 Harmonic part 2 period (s) Real Input false 0.1
a_rnd Random numbers amplitude Real Input false 1
f_frq Calc function period (Hz) Real Input true 100
tmp_g1 Harmonic part 1 counter Real Input true 0
tmp_g2 Harmonic part 2 counter Real Input true 0

Program:
tmp_g1=(tmp_g1>6.28)?0:tmp_g1+6.28/(per_g1*f_frq);
tmp_g2=(tmp_g2>6.28)?0:tmp_g2+6.28/(per_g2*f_frq);
out=off+a_g1*sin(tmp_g1)+a_g2*sin(tmp_g2)+a_rnd*(rand(2)-1);

Library of models of technological devices 199

Ball crane (ballCrane) <1.4>

Description: Ball crane model. Include going and estrangement time.

Parameters:
ID Parameter Type Mode Hide Default

pos Position (%) Real Output false 0
com Command Boolean Input false 0
st_open State "Open" Boolean Output false 0
st_close State "Close" Boolean Output false 1
t_full Going time (s) Real Input false 5
t_up Estrangement time (s) Real Input false 0.5
f_frq Calc frequency (Hz) Real Input true 100
tmp_up Estrangement counter Real Input true 0
lst_com Last command Boolean Input true 0

Program:
if(!(st_close && !com) && !(st_open && com))
{
 tmp_up=(pos>0&&pos<100)?0:(tmp_up>0&&lst_com==com)?tmp_up-1./f_frq:t_up;
 pos+=(tmp_up>0)?0:(100.*(com?1.:-1.))/(t_full*f_frq);
 pos=(pos>100)?100:(pos<0)?0:pos;
 st_open=(pos>=100)?true:false;
 st_close=(pos<=0)?true:false;
 lst_com=com;
}

Separator (separator) <14>

Description: Separator model included two phase: liquid and gas.

Parameters:
ID Parameter Type Mode Hide Default

Fi Input flow (tones/h) Real Output false 0
Pi Input pressure (ata) Real Input false 1
Si Input cutset (m2) Real Input false 0.2
Fo Output flow (tones/h) Real Input false 0
Po Output pressure (ata) Real Output false 1
So Output cutset (m2) Real Input false 0.2
lo Output length (m) Real Input false 10
Fo_ж Output liquid flow (tones/h) Real Input false 0
Po_ж Output liquid pressure (ata) Real Output false 1
Lж Liquid level (%) Real Output false 0
ProcЖ % liquid. Real Input false 0.01
Vap Device capacity (m3) Real Input false 10
Q0 Norm density of environs (kg/m3) Real Input false 1
Qж Liquid density (kg/m3) Real Input false 1000
f_frq Calc frequency (Hz) Real Input true 200

Program:
Fж=max(0,Fi*ProcЖ);
DAQ.JavaLikeCalc.lib_techApp.pipeBase(Fi,Pi,293,Si,Fo+Fж,Po,293,So,lo,Q0,0.95,0.0

1,f_frq);

Library of models of technological devices 200

Lж = max(0,min(100,Lж+0.27*(Fж-Fo_ж)/(Vap*Qж*f_frq)));
Po_ж = Po + Lж*Vap/Qж;

Valve (klap) <19.5>

Description: Valve model, include:
• two valve in one;
• super-critical speed;
• temperature change on baffling;
• work to one side, back valve;
• valve position speed control;
• nonlinear cut changing by open position.

Parameters:
ID Parameter Type Mode Hide Default

Fi Input flow (tones/h) Real Output false 0
Pi Input pressure (ata) Real Input false 1
Ti Input temperature (K) Real Input false 273
Fo Output flow (tones/h) Real Input false 0
Po Output pressure (ata) Real Output false 1
To Output temperature (K) Real Output false 273
So Output pipe cutset (m2) Real Input false .2
lo Output pipe length (m) Real Input false 10
S_kl1 Valve 1 cutset (m2) Real Input false .1
l_kl1 Valve 1 open (%) Real Input false 0
t_kl1 Valve 1 open time (s) Real Input false 10
S_kl2 Valve 2 cutset (m2) Real Input false .05
l_kl2 Valve 2 open (%) Real Input false 0
t_kl2 Valve 2 open time (s) Real Input false 5
Q0 Norm density of environs (kg/m3) Real Input false 1
Kln Linearity coefficient Real Input false 1
Kpr Compressibility coefficient (0...1) Real Input false 0.95
Ct Warm capacity of environs Real Input false 20
Riz Warm resistance of isolation Real Input false 20
noBack Back valve Boolean Input false 0
Fwind Air speed Real Input false 1
Twind Air temperature Real Input false 273
f_frq Calc frequency (Hz) Real Input true 200
tmp_l1 Position 1 lag Real Output true 0
tmp_l2 Position 2 lag Real Output true 0

Program:
Qr=Q0+Q0*Kpr*(Pi-1);
tmp_l1 += (abs(l_kl1-tmp_l1) > 5) ? 100*sign(l_kl1-tmp_l1)/(t_kl1*f_frq) :

(l_kl1-tmp_l1)/(t_kl1*f_frq);
tmp_l2 += (abs(l_kl2-tmp_l2) > 5) ? 100*sign(l_kl2-tmp_l2)/(t_kl2*f_frq) :

(l_kl2-tmp_l2)/(t_kl2*f_frq);
Sr=(S_kl1*pow(tmp_l1,Kln)+S_kl2*pow(tmp_l2,Kln))/pow(100,Kln);

DAQ.JavaLikeCalc.lib_techApp.pipeBase(Fi,Pi,Ti,Sr,EVAL_REAL,Po,293,So,lo,Q0,Kpr,0
.01,f_frq);

if(noBack) Fi = max(0,Fi);
Po = max(0,min(100,Po+0.27*(Fi-Fo)/(Q0*Kpr*So*lo*f_frq)));

Library of models of technological devices 201

To = max(0,min(2e3,To+(abs(Fi)*(Ti*pow(Po/Pi,0.02)-To)+(Fwind+1)*(Twind-To)/Riz)/
(Ct*So*lo*Qr*f_frq)));

Lag (clear) (lagClean) <2.9>

Description: Model of clear lag (transportable). Provide for include some simple lag chains. Appointed
for lags into long pipes.

Parameters:
ID Parameter Type Mode Hide Default

out Output Real Return false 0
in Input Real Input false 0
t_lg Lag time (s) Real Input false 10
f_frq Calc frequency (Hz) Real Input true 100
cl1 Chain 1 Real Input true 0
cl2 Chain 2 Real Input true 0
cl3 Chain 3 Real Input true 0

Program:
cl1-=(cl1-in)/(t_lg*f_frq/4);
cl2-=(cl2-cl1)/(t_lg*f_frq/4);
cl3-=(cl3-cl2)/(t_lg*f_frq/4);
out-=(out-cl3)/(t_lg*f_frq/4);

Boiler: barrel (boilerBarrel) <30.5>

Description: The model of the boiler's barrel.

Parameters:
ID Parameter Type Mode Hide Default

Fi1 Input water flow (tones/h) Real Output false 22
Pi1 Input water pressure (at) Real Input false 43
Ti1 Input water temperature (K) Real Input false 523
Si1 Input water cutset (m2) Real Input false 0.6
Fi2 Input smoke gas flow (tones/h) Real Output false
Pi2 Input smoke gas pressure (at) Real Input false 1.3
Ti2 Input smoke gas temperature (K) Real Input false 1700
Si2 Input smoke gas cutset (m2) Real Input false 10
Vi1 Barrel volume (m3) Real Input false 3
Lo Barrel level (%) Real Output false 10
S Heated surface (м2) Real Input false 15
k Heat transfer coefficient Real Input false 0.8
Fo Output steam flow (tones/h) Real Input false 20
Po1 Output steam pressure (at) Real Output false 41.68
To1 Output steam temperature (K) Real Output false 10
So1 Output steam pipe cutset (m2) Real Input false 0.5
lo1 Output steam pipe length (m) Real Input false 5
Fo2 Output smoke gas flow (tones/h) Real Input false 180
Po2 Output smoke gas pressure (at) Real Output false 1
To2 Output smoke gas temperature (K) Real Input false 0
Fpara Inner barrel steam flow (tones/h) Real Output false 0

Library of models of technological devices 202

ID Parameter Type Mode Hide Default
Tv Inner water temperature (K) Real Output false 0
f_frq Calc frequency (Hz) Real Input false 200

Program:
// Water
DAQ.JavaLikeCalc.lib_techApp.pipeBase(Fi1,Pi1,293,Si1,EVAL_REAL,Po1,293,So1,lo1,1e

3,0.001,0.01,f_frq);
Fi1 = max(0,Fi1);

// Steam
Lo = max(0,min(100,Lo+(Fi1-Fpara)*100/(Vi1*1000*f_frq)));
To1 = (100*pow(Po1,0.241)+5)+273;

if(Tv<To1)
{
 Tv+=(k*S*(Ti2-Tv)-Fi1*0.00418*(Tv-Ti1))/f_frq;
 Fpara=0;
}
if(Tv >= To1)
{
 Tv=To1;
 Lambda=2750.0-0.00418*(Tv-273);
 Fpara=(5*S*Fi2*(Ti2-Tv)-Fi1*0.00418*(Tv-Ti1))/(Po1*Lambda);
}

To2=Ti2-Tv/k;
Po1 = max(0,min(100,Po1+0.27*(Fpara-Fo)/(1.2*0.98*((1-

Lo/100)*Vi1+So1*lo1)*f_frq)));

// Smoke gas
DAQ.JavaLikeCalc.lib_techApp.pipeBase(Fi2,Pi2,293,Si2,Fo2,Po2,293,Si2,30,1.2,0.98,

0.01,f_frq);

Boiler: burner (boilerBurner) <50.5>

Description: The fire chamber's of the boiler model which works with three fuels: blast-furnace gas,
coke and natural gas.

Parameters:
ID Parameter Type Mode Hide Default

Fi1 Input blast furnace gas flow (tone/h) Real Output false
Pi1 Input blast furnace gas pressure (at) Real Input false
Ti1 Input blast furnace gas temperature (K) Real Input false 40
Si1 Input blast furnace gas pipe cutset (m2) Real Input false
Fi2 Input natural gas flow (tone/h) Real Output false
Pi2 Input natural gas pressure (at) Real Input false
Ti2 Input natural gas temperature (K) Real Input false 20
Si2 Input natural gas pipe cutset (m2) Real Input false
Fi3 Input coke oven gas flow (tone/h) Real Output false
Pi3 Input coke oven gas pressure (at) Real Input false
Ti3 Input coke oven gas temperature (K) Real Input false 0
Si3 Input coke oven gas pipe cutset (m2) Real Input false
Fi4 Input air flow (tone/h) Real Output false
Pi4 Input air pressure (at) Real Input false
Ti4 Input air temperature (K) Real Input false 20
Si4 Input air cutset (m2) Real Input false

Library of models of technological devices 203

ID Parameter Type Mode Hide Default
Fo Output smoke gas flow (tones/h) Real Input false
Po Output smoke gas pressure (at) Real Output false
To Output smoke gas temperature (K) Real Output false
So Output smoke gas pipe cutset (m2) Real Input false 90
lo Output smoke gas pipe length (m) Real Input false
V Burner volume (m3) Real Input false 830
CO The percentage of CO in the flue stack gases (%) Real Output false
O2 The percentage of O2 in the flue stack gases (%) Real Output false
f_frq Calc frequency (Hz) Real Input false 200

Program:
using DAQ.JavaLikeCalc.lib_techApp;
pipeBase(Fi1,Pi1,Ti1,Si1,EVAL_REAL,Po,293,So,lo,1.2,0.95,0.01,f_frq);
Fi1 = max(0,Fi1);
pipeBase(Fi2,Pi2,Ti2,Si2,EVAL_REAL,Po,293,So,lo,0.7,0.95,0.01,f_frq);
Fi2 = max(0,Fi2);
pipeBase(Fi3,Pi3,Ti3,Si3,EVAL_REAL,Po,293,So,lo,1.33,0.95,0.01,f_frq);
Fi3 = max(0,Fi3);
pipeBase(Fi4,Pi4,Ti4,Si4,EVAL_REAL,Po,293,So,lo,1.293,0.95,0.01,f_frq);
Fi4 = max(0,Fi4);

Neobhod_vzd = Fi1+10*Fi2+4*Fi3;
F_DG = Fi1+Fi2+Fi3+Fi4;
O2 = max(0,min(100,(Fi4-Neobhod_vzd)*100/F_DG));
CO = min(100, (O2<1) ? (1.2*abs(O2)) : 0);
koef = min(1,Fi4/Neobhod_vzd);
Q = koef*(8050*Fi2+3900*Fi3+930*Fi1);
delta_t = Q/(F_DG*1.047);
To = max(0,min(2000,(delta_t+(Ti4-273)+(Ti3-273)*(Fi3/Fi1)+(Ti2-273)*(Fi2/Fi1)+

(Ti1-273)*(Fi1/Fi4))+273));

Po = max(0,min(10,Po+0.27*(F_DG-Fo)/(1.2*0.95*(So*lo+V)*f_frq)));

Network (loading) (net) <13>

Description: Loading with constant pressure on network. Contain parameter for noise connection.

Parameters:
ID Parameter Type Mode Hide Default

Fi Input flow (tones/h) Real Output false 10
Pi Input pressure (ata) Real Input false 1
Po Output pressure setpoint (ata) Real Input false 1
So Output pipe cutset (m2) Real Input false 0.1
Kpr Compressibility coefficient (0...1) Real Input false 0.95
Noise Input flow's noise Real Input false 1
Q0 Norm density of environs (kg/m3) Real Input false 1
f_frq Calc frequency (Hz) Real Input true 200

Program:
DAQ.JavaLikeCalc.lib_techApp.pipeBase(Fi,Pi,293,So,EVAL_REAL,Po,293,So,10,Q0,Kpr,

0.01,f_frq);

Library of models of technological devices 204

Source (pressure) (src_press) <12>

Description: Source pressure with constant pressure. Contained the parameter for noise connection.

Parameters:
ID Parameter Type Mode Hide Default

Pi Input pressure setpoint (at) Real Input false 10
Fo Output flow (tones/h) Real Input false 0
Po Output pressure (at) Real Output false 1
So Output pipe cutset (m2) Real Input false 0.1
lo Output pipe length (m) Real Input false 100
Noise Input flow's noise Real Input false 1
Q0 Norm density of environs (kg/m3) Real Input false 1
Kpr Compressibility coefficient (0...1) Real Input false 0.95
f_frq Calc frequency (Hz) Real Input true 200
Fit Input flow laged Real Output true 0

Program:
DAQ.JavaLikeCalc.lib_techApp.pipeBase(Fit,Pi*Noise,293,So,Fo,Po,293,So,lo,Q0,Kpr,

0.01,f_frq);

Air cooler (cooler) <16.5>

Description: Model of the air cooler for gas flow.

Parameters:
ID Parameter Type Mode Hide Default

Fi Input flow (tones/h) Real Output false 0
Pi Input pressure (at) Real Input false 1
Ti Input temperature (K) Real Input false 273
Si Cooler's pipes cutset (m2) Real Input false 0.05
li Full cooler's pipes length (m) Real Input false 10
Fo Output flow (tones/h) Real Input false 0
Po Output pressure (at) Real Output false 1
To Output temperature (K) Real Output false 273
So Output pipe cutset (m2) Real Input false .2
lo Output pipe length (m) Real Input false 10
Tair Cooling air temperature (К) Real Input false 283
Wc Cooler performance Real Input false 200
Q0 Norm density of environs (kg/m3) Real Input false 1
Ct Warm capacity of environs Real Input false 100
Rt Warm resistance of isolation Real Input false 1
f_frq Calc frequency (Hz) Real Input true 200

Program:
DAQ.JavaLikeCalc.lib_techApp.pipeBase(Fi,Pi,293,Si,Fo,Po,293,So,lo,Q0,0.95,0.01,f

_frq);
Qr = Q0+Q0*0.95*(Pi-1);
To+=(Fi*(Ti-To)+Wc*(Tair-To)/Rt)/(Ct*(Si*li+So*lo)*Qr*f_frq);

Library of models of technological devices 205

Gas compressor (compressor) <12>

Description: Model of the gas compressor. Implement surge effect. Sarge count from the dynamic-gas
curve, and next count coefficient of sarge margin.

Parameters:
ID Parameter Type Mode Hide Default

Fi Input flow (tones/h) Real Output false 0
Pi Input pressure (at) Real Input false 1
Ti Input temperature (K) Real Input false 273
Fo Output flow (tones/h) Real Input false 0
Po Output pressure (at) Real Output false 1
To Output temperature (K) Real Output false 273
So Output pipe cutset (m2) Real Input false 0.2
lo Output pipe length (m) Real Input false 2
Kzp Surge protect margin coefficient Real Output false 0.1
N Turnovers (1000 x turn/min) Real Input false 0
V Capacity (m3) Real Input false 7
Kpmp Surge coefficient (surge point) Real Input false 0.066
Kslp Slope coefficient of surge curve Real Input false 0.08
Q0 Norm density of environs (kg/m3) Real Input false 1
Kpr Compressibility coefficient (0...1) Real Input false 0.95
Ct Warm capacity of environs Real Input false 100
Riz Warm resistance of isolation Real Input false 100
Fwind Air speed Real Input false 1
Twind Air temperature Real Input false 273
f_frq Calc frequency (Hz) Real Input true 200
Fit Input flow laged Real Output true 0

Program:
Pmax = max(Pi,Po);
Pmin = min(Pi,Po);
Qr = Q0+Q0*Kpr*(Pi-1);
Qrf = Q0+Q0*Kpr*(Pmax-1);
Ftmp=(N>0.1)?(1-10*(Po-Pi)/(Qr*(pow(N,3)+0.1)*Kpmp)):1;
Kzp=1-Ftmp; //Коэффиц. запаса
Fi=V*N*Qr*sign(Ftmp)*pow(abs(Ftmp),Kslp)+
 0.3*(4*So*Qrf/(0.01*lo*1.7724+4*Qrf))*sign(Pi-Po)*pow(Qrf*(Pmax-

max(Pmax*0.528,Pmin)),0.5);
Fit -= (Fit-Fi)/max(1,(lo*f_frq)/max(1e-4,abs(Fi/(Qrf*So))));
Po = max(0,min(100,Po+0.27*(Fi-Fo)/(Q0*Kpr*So*lo*f_frq)));

To+=(abs(Fi)*(Ti*pow(Po/Pi,0.3)-To)+(Fwind+1)*(Twind-To)/Riz)/
(Ct*(V+So*lo)*Qr*f_frq);

Library of models of technological devices 206

Source (flow) (src_flow) <2.2>

Description: Source of constant flow. Contained parameter for noise connection.

Parameters:
ID Parameter Type Mode Hide Default

Fi Input flow setpoint (tones/h) Real Input false 10
Fo Output flow (tones/h) Real Input false 10
Po Output pressure (at) Real Output false 1
So Output pipe cutset (m2) Real Input false 0.1
lo Output pipe length (m) Real Input false 100
Noise Input flow's noise Real Input false 1
Q0 Norm density of environs (kg/m3) Real Input false 1
Kpr Compressibility coefficient (0...1) Real Input false 0.95
f_frq Calc frequency (Hz) Real Input true 100

Program:
Po = max(0,min(100,Po+0.27*(Noise*Fi-Fo)/(Q0*Kpr*So*lo*f_frq)));

Pipe-base (pipeBase) <11.5>

Description: Implementation of the basic foundations of the model pipe:
• Flow in the pipe, taking into account the speed, pressure drop, resistance due to friction and the
critical flow.
• Calculation of pressure.
• Accounting for medium density and degree of compressibility for both gases and liquids.

Parameters:
ID Parameter Type Mode Hide Default

Fi Input flow (tones/h) Real Output false 0
Pi Input pressure (at) Real Input false 1
Ti Input temperature (K) Real Input false 293
Si Input cutset (m2) Real Input false .2
Fo Output flow (tones/h) Real Input false 0
Po Output pressure (at) Real Output false 1
To Output temperature (K) Real Output false 293
So Output cutset (m2) Real Input false .2
lo Output length (m) Real Input false 10
Q0 Norm density of environs (kg/m3) Real Input false 1
Kpr Compressibility coefficient (0...1) Real Input false 0.98
Ktr Coefficient of friction Real Input false 0.01
f_frq Calc frequency (Hz) Real Input false 100

Program:
Pmax = max(Pi,Po);
Pmin = min(Pi,Po);
Qr = Q0+Q0*Kpr*(Pmax-1);
Fit = 630*(4*Si*So*Qr/(Ktr*lo*1.7724*Si+4*So*Qr))*sign(Pi-Po)*pow(Qr*(Pmax-

max(Pmax*0.528,Pmin)),0.5);
Fi -= (Fi-Fit)/max(1,(lo*f_frq)/max(1,abs(Fit/(Qr*So))));
if(!Fo.isEVal()) Po = max(0,min(100,Po+0.27*(Fi-Fo)/(Q0*Kpr*So*lo*f_frq)));

Library of models of technological devices 207

Pipe 1->1 (pipe1_1) <36.5>

Description: Model of the pipe by scheme: 1 -> 1.

Parameters:
ID Parameter Type Mode Hide Default

Fi Input flow (tones/h) Real Output false 0
Pi Input pressure (at) Real Input false 1
Fo Output flow (tones/h) Real Input false 0
Po Output pressure (at) Real Output false 1
So Output cutset (m2) Real Input false .2
lo Output length (m) Real Input false 10
Q0 Norm density of environs (kg/m3) Real Input false 1
Kpr Compressibility coefficient (0...1) Real Input false 0.95
f_frq Calc frequency (Hz) Real Input true 200
Pti Pti Real Output true 1
Fto Fto Real Output true 0
Pt1 Pt1 Real Output true 1
Ft1 Ft1 Real Output true 0

Program:
DAQ.JavaLikeCalc.lib_techApp.pipeBase(Fi,Pi,293,So,Ft1,Pti,293,So,0.33*lo,Q0,Kpr,0

.01,f_frq);
DAQ.JavaLikeCalc.lib_techApp.pipeBase(Ft1,Pti,293,So,Fto,Pt1,293,So,0.33*lo,Q0,Kpr

,0.01,f_frq);
DAQ.JavaLikeCalc.lib_techApp.pipeBase(Fto,Pt1,293,So,Fo,Po,293,So,0.33*lo,Q0,Kpr,0

.01,f_frq);

Pipe 2->1 (pipe2_1) <26>

Description: Model of the pipe by scheme: 2 -> 1.

Parameters:
ID Parameter Type Mode Hide Default

Fi1 Input 1 flow (tones/h) Real Output false 0
Pi1 Input 1 pressure (at) Real Input false 1
Ti1 Input 1 temperature (K) Real Input false 273
Si1 Input 1 cutset (m2) Real Input false 0.2
Fi2 Input 2 flow (tones/h) Real Output false 0
Pi2 Input 2 pressure (at) Real Input false 1
Ti2 Input 2 temperature (K) Real Input false 273
Si2 Input 2 cutset (m2) Real Input false 0.2
Fo Output flow (tones/h) Real Input false 0
Po Output pressure (at) Real Output false 1
To Output temperature (K) Real Output false 273
So Output cutset (m2) Real Input false .2
lo Output length (m) Real Input false 10
Q0 Norm density of environs (kg/m3) Real Input false 1
Kpr Compressibility coefficient (0...1) Real Input false 0.95
Ct Warm capacity of environs Real Input false 20
Riz Warm resistance of isolation Real Input false 20
Fwind Air speed Real Input false 1

Library of models of technological devices 208

ID Parameter Type Mode Hide Default
Twind Air temperature (К) Real Input false 273
f_frq Calc frequency (Hz) Real Input true 100

Program:
DAQ.JavaLikeCalc.lib_techApp.pipeBase(Fi1,Pi1,293,Si1,EVAL_REAL,Po,293,So,lo,Q0,Kp

r,0.01,f_frq);
DAQ.JavaLikeCalc.lib_techApp.pipeBase(Fi2,Pi2,293,Si2,EVAL_REAL,Po,293,So,lo,Q0,Kp

r,0.01,f_frq);
Po = max(0,min(100,Po+0.27*(Fi1+Fi2-Fo)/(Q0*Kpr*So*lo*f_frq)));
To = max(0,To+(Fi1*(Ti1-To)+Fi2*(Ti2-To)+(Fwind+1)*(Twind-To)/Riz)/

(Ct*So*lo*Q0*f_frq));

Pipe 3->1 (pipe3_1) <36>

Description: Model of the pipe by scheme: 3 -> 1.

Parameters:
ID Parameter Type Mode Hide Default

Fi1 Input 1 flow (tones/h) Real Output false 0
Pi1 Input 1 pressure (at) Real Input false 1
Ti1 Input 1 temperature (K) Real Input false 273
Si1 Input 1 cutset (m2) Real Input false 0.2
Fi2 Input 2 flow (tones/h) Real Output false 0
Pi2 Input 2 pressure (at) Real Input false 1
Ti2 Input 2 temperature (K) Real Input false 273
Si2 Input 2 cutset (m2) Real Input false 0.2
Fi3 Input 3 flow (tones/h) Real Output false 0
Pi3 Input 3 pressure (at) Real Input false 1
Ti3 Input 3 temperature (K) Real Input false 273
Si3 Input 3 cutset (m2) Real Input false 0.2
Fo Output flow (tones/h) Real Input false 0
Po Output pressure (at) Real Output false 1
To Output temperature (K) Real Output false 273
So Output cutset (m2) Real Input false .2
lo Output length (m) Real Input false 10
Q0 Norm density of environs (kg/m3) Real Input false 1
Kpr Compressibility coefficient (0...1) Real Input false 0.95
Ct Warm capacity of environs Real Input false 20
Riz Warm resistance of isolation Real Input false 20
Fwind Air speed Real Input false 1
Twind Air temperature (К) Real Input false 273
f_frq Calc frequency (Hz) Real Input true 100

Program:
DAQ.JavaLikeCalc.lib_techApp.pipeBase(Fi1,Pi1,293,Si1,EVAL_REAL,Po,293,So,lo,Q0,Kp

r,0.01,f_frq);
DAQ.JavaLikeCalc.lib_techApp.pipeBase(Fi2,Pi2,293,Si2,EVAL_REAL,Po,293,So,lo,Q0,Kp

r,0.01,f_frq);
DAQ.JavaLikeCalc.lib_techApp.pipeBase(Fi3,Pi3,293,Si3,EVAL_REAL,Po,293,So,lo,Q0,Kp

r,0.01,f_frq);
Po = max(0,min(100,Po+0.27*(Fi1+Fi2+Fi3-Fo)/(Q0*Kpr*So*lo*f_frq)));

Library of models of technological devices 209

To = max(0,To+(Fi1*(Ti1-To)+Fi2*(Ti2-To)+Fi3*(Ti3-To)+(Fwind+1)*(Twind-To)/Riz)/
(Ct*So*lo*Q0*f_frq));

Pipe 1->2 (pipe1_2) <25.5>

Description: Model of the pipe by scheme: 1 -> 2.

Parameters:
ID Parameter Type Mode Hide Default

Fi Input flow (tones/h) Real Output false 0
Pi Input pressure (at) Real Input false 1
Fo1 Output 1 flow (tones/h) Real Input false 0
Po1 Output 1 pressure (at) Real Output false 1
So1 Output 1 cutset (m2) Real Input false .2
lo1 Output 1 length (m) Real Input false 10
Fo2 Output 2 flow (tones/h) Real Input false 0
Po2 Output 2 pressure (at) Real Output false 1
So2 Output 2 cutset (m2) Real Input false .2
lo2 Output 2 length (m) Real Input false 10
Q0 Norm density of environs (kg/m3) Real Input false 1
Kpr Compressibility coefficient (0...1) Real Input false 0.95
f_frq Calc frequency (Hz) Real Input true 100
F1tmp Temporary flow 1 Real Output true 0
F2tmp Temporary flow 2 Real Output true 0
Pot1 Temporary pressure 1 Real Output true 1
Pot2 Temporary pressure 2 Real Output true 1

Program:
DAQ.JavaLikeCalc.lib_techApp.pipeBase(F1tmp,Pi,293,So1,Fo1,Po1,293,So1,lo1,Q0,Kpr,

0.01,f_frq);
DAQ.JavaLikeCalc.lib_techApp.pipeBase(F2tmp,Pi,293,So2,Fo2,Po2,293,So2,lo2,Q0,Kpr,

0.01,f_frq);
Fi=F1tmp+F2tmp;

Pipe 1->3 (pipe1_3) <36.5>

Description: Model of the pipe by scheme: 1 -> 3.

Parameters:
ID Parameter Type Mode Hide Default

Fi Input flow (tones/h) Real Output false 0
Pi Input pressure (at) Real Input false 1
Fo1 Output 1 flow (tones/h) Real Input false 0
Po1 Output 1 pressure (at) Real Output false 1
So1 Output 1 cutset (m2) Real Input false .2
lo1 Output 1 length (m) Real Input false 10
Fo2 Output 2 flow (tones/h) Real Input false 0
Po2 Output 2 pressure (at) Real Output false 1
So2 Output 2 cutset (m2) Real Input false .2
lo2 Output 2 length (m) Real Input false 10
Fo3 Output 3 flow (tones/h) Real Input false 0
Po3 Output 3 pressure (at) Real Output false 1

Library of models of technological devices 210

ID Parameter Type Mode Hide Default
So3 Output 3 cutset (m2) Real Input false .2
lo3 Output 3 length (m) Real Input false 10
Q0 Norm density of environs (kg/m3) Real Input false 1
Kpr Compressibility coefficient (0...1) Real Input false 0.95
f_frq Calc frequency (Hz) Real Input true 100
F1tmp Temporary flow 1 Real Output true 0
F2tmp Temporary flow 2 Real Output true 0
F3tmp Temporary flow 3 Real Output true 0
Pot1 Temporary pressure 1 Real Output true 1
Pot2 Temporary pressure 2 Real Output true 1
Pot3 Temporary pressure 3 Real Output true 1

Program:
DAQ.JavaLikeCalc.lib_techApp.pipeBase(F1tmp,Pi,293,So1,Fo1,Po1,293,So1,lo1,Q0,Kpr,

0.01,f_frq);
DAQ.JavaLikeCalc.lib_techApp.pipeBase(F2tmp,Pi,293,So2,Fo2,Po2,293,So2,lo2,Q0,Kpr,

0.01,f_frq);
DAQ.JavaLikeCalc.lib_techApp.pipeBase(F3tmp,Pi,293,So3,Fo3,Po3,293,So3,lo3,Q0,Kpr,

0.01,f_frq);
Fi=F1tmp+F2tmp+F3tmp;

Pipe 1->4 (pipe1_4) <47.5>

Description: Model of the pipe by scheme: 1 -> 4.

Parameters:
ID Parameter Type Mode Hide Default

Fi Input flow (tones/h) Real Output false 0
Pi Input pressure (at) Real Input false 1
Fo1 Output 1 flow (tones/h) Real Input false 0
Po1 Output 1 pressure (at) Real Output false 1
So1 Output 1 cutset (m2) Real Input false .2
lo1 Output 1 length (m) Real Input false 10
Fo2 Output 2 flow (tones/h) Real Input false 0
Po2 Output 2 pressure (at) Real Output false 1
So2 Output 2 cutset (m2) Real Input false .2
lo2 Output 2 length (m) Real Input false 10
Fo3 Output 3 flow (tones/h) Real Input false 0
Po3 Output 3 pressure (at) Real Output false 1
So3 Output 3 cutset (m2) Real Input false .2
lo3 Output 3 length (m) Real Input false 10
Fo4 Output 4 flow (tones/h) Real Input false 0
Po4 Output 4 pressure (at) Real Output false 1
So4 Output 4 cutset (m2) Real Input false .2
lo4 Output 4 length (m) Real Input false 10
Q0 Norm density of environs (kg/m3) Real Input false 1
Kpr Compressibility coefficient (0...1) Real Input false 0.95
f_frq Calc frequency (Hz) Real Input true 100
F1tmp Temporary flow 1 Real Output true 0

Library of models of technological devices 211

ID Parameter Type Mode Hide Default
F2tmp Temporary flow 2 Real Output true 0
F3tmp Temporary flow 3 Real Output true 0
F4tmp Temporary flow 4 Real Output true 0
Pot1 Temporary pressure 1 Real Output true 1
Pot2 Temporary pressure 2 Real Output true 1
Pot3 Temporary pressure 3 Real Output true 1
Pot4 Temporary pressure 4 Real Output true 1

Program:
DAQ.JavaLikeCalc.lib_techApp.pipeBase(F1tmp,Pi,293,So1,Fo1,Po1,293,So1,lo1,Q0,Kpr,

0.01,f_frq);
DAQ.JavaLikeCalc.lib_techApp.pipeBase(F2tmp,Pi,293,So2,Fo2,Po2,293,So2,lo2,Q0,Kpr,

0.01,f_frq);
DAQ.JavaLikeCalc.lib_techApp.pipeBase(F3tmp,Pi,293,So3,Fo3,Po3,293,So3,lo3,Q0,Kpr,

0.01,f_frq);
DAQ.JavaLikeCalc.lib_techApp.pipeBase(F4tmp,Pi,293,So4,Fo4,Po4,293,So4,lo4,Q0,Kpr,

0.01,f_frq);
Fi=F1tmp+F2tmp+F3tmp+F4tmp;

Valve proc. mechanism (klapMech) <3>

Description: Model of the valve process mechanism. Include going time (aperiodic chain of two level)
and estrangement time.

Parameters:
ID Parameter Type Mode Hide Default

pos Position (%) Real Output false 0
pos_sensor Position by sensor (%) Real Output false 0
com Command Real Input false 0
st_open State "Open" Boolean Output false 0
st_close State "Close" Boolean Output false 1
t_full Going time (s) Real Input false 3
t_up Estrangement time (s) Real Input false 1
t_sensor Sensors' lag time (s) Real Input false 1
f_frq Calc frequency (Hz) Real Input true 100
tmp_up Estrangement count Real Output false 0
lst_com Last command Real Output false 0

Program:
if((pos >= 99 && com >= 99) || (pos <= 1 && com <=1))
{
 tmp_up = t_up;
 if(pos>=99) { pos=100; st_open=true; }
 else { pos = 0; st_close=true; }
}
else if(tmp_up > 0) tmp_up-=1./f_frq;
else
{
 st_open=st_close=false;
 lst_com+=(com-lst_com)/(0.5*t_full*f_frq);
 pos+=(lst_com-pos)/(0.5*t_full*f_frq);
}
pos_sensor+=(pos-pos_sensor)/(t_sensor*f_frq);

Library of models of technological devices 212

Diaphragm (diafragma) <14>

Description: Diaphragm model.

Parameters:
ID Parameter Type Mode Hide Default

Fi Input flow (tones/h) Real Output false 0
Pi Input pressure (at) Real Input false 1
Fo Output flow (tones/h) Real Input false 0
Po Output pressure (at) Real Output false 1
dP Pressure differential (kPa) Real Output false 0
Sdf Diaphragm cutset (m2) Real Input false 0.1
So Output pipe cutset (m2) Real Input false 0.2
lo Output pipe length (m) Real Input false 10
Q0 Norm density of environs (kg/m3) Real Input false 1
Kpr Compressibility coefficient (0...1) Real Input false 0.95
f_frq Calc frequency (Hz) Real Input true 100

Program:
DAQ.JavaLikeCalc.lib_techApp.pipeBase(Fi,Pi,293,Sdf,Fo,Po,293,So,lo,Q0,Kpr,0.01,f

_frq);
dP -= (dP-100*(Pi-Po))/f_frq;

Heat exchanger (heatExch) <28.4>

Description: The model of the heat exchanger, it calculates the heat exchange of the two streams.

Parameters:
ID Parameter Type Mode Hide Default

Fi1 Input 1 flow (tones/h) Real Input false 20
Pi1 Input 1 pressure (at) Real Input false 1
Ti1 Input 1 temperature (K) Real Input false 20
Si1 Input 1 cutset (m2) Real Input false 1
li1 Input 1 length (m) Real Input false 10
Q0i1 Input 1 norm density (kg/m3) Real Input false 1
Kpr1 Input 1 compressibility coefficient (0...1) Real Input false 0.9
Ci1 Input 1 warm capacity Real Input false 1
Fi2 Input 2 flow (tones/h) Real Input false 20
Pi2 Input 2 pressure (at) Real Input false 1
Ti2 Input 2 temperature (K) Real Input false 40
Si2 Input 2 cutset (m2) Real Input false 1
li2 Input 2 length (m) Real Input false 10
Q0i2 Input 2 norm density (kg/m3) Real Input false 1
Kpr2 Input 2 compressibility coefficient (0...1) Real Input false 0.9
Ci2 Input 2 warm capacity Real Input false 1
ki Heat transfer coefficient Real Input false 0.9
Fo1 Output 1 flow (tones/h) Real Input false 0
Po1 Output 1 pressure (at) Real Output false 1
To1 Output 1 temperature (K) Real Output false 273
So1 Output 1 cutset (m2) Real Output false 1
lo1 Output 1 length (m) Real Output false 10

Library of models of technological devices 213

ID Parameter Type Mode Hide Default
Fo2 Output 2 flow (tones/h) Real Input false 0
Po2 Output 2 pressure (at) Real Output false 1
To2 Output 2 temperature (K) Real Output false 273
So2 Output 2 cutset (m2) Real Output false 1
lo2 Output 2 length (m) Real Output false 10
f_frq Calc frequency (Hz) Real Input false 200

Program:
DAQ.JavaLikeCalc.lib_techApp.pipeBase(Fi1,Pi1,Ti1,Si1,Fo1,Po1,293,So1,lo1,Q0i1,Kp

r1,0.01,f_frq);
DAQ.JavaLikeCalc.lib_techApp.pipeBase(Fi2,Pi2,Ti2,Si2,Fo2,Po2,293,So2,lo2,Q0i2,Kp

r2,0.01,f_frq);

To1=max(0,min(1e4,(Fi1*Ti1*Ci1+ki*Fi2*Ti2*Ci2)/(Fi1*Ci1+ki*Fi2*Ci2)));
To2=max(0,min(1e4,(ki*Fi1*Ti1*Ci1+Fi2*Ti2*Ci2)/(ki*Fi1*Ci1+Fi2*Ci2)));

Library of models of technological devices 214

Main elements library of the user interface
Name: wlb_Main
Founded: september 2007
Version: 0.5.0
State: Open (GPL)
Author: Roman Savochenko, Maxim Lysenko
Description: Provides the library of the main elements of the user interface.
Address: DB is in the file: SQLite.vcaBase.wlb_Main (vcabase.db.gz)

The library is created to provide mnemonic elements of the user interface. The library is built on the
basis primitives of widgets and JavaLikeCalc module, allowing to create calculations on the Java-like
language.

It is possible to connect the library of mnemonic elements of user interface to the project of the
OpenSCADA station by downloading the attached file of the database, placing it in in the database
directory of the station's project and creating the database object for the DB module "SQLite", indicating
the database file in the configuration.

The library contains about two dozen graphic elements, often sought when forming the user interface of
process control. Names and text options are available in three languages: English, Russian and Ukrainian.

Main elements library of the user interface 215

http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc?v=ptq
http://wiki.oscada.org/HomePageEn/Doc/VCAEngine#h887-13
http://wiki.oscada.org/Using/GraphicElementsLibraries/files?get=vcabase.db.gz
http://wiki.oscada.org/HomePageEn/MaximLysenko?v=vwg
http://wiki.oscada.org/RomanSavochenko?v=blo

 1. Analog show (anShow)
The element, shown in Fig. 1, is used to display the current value of the analog parameter and modes of

regulator, if the parameter is regulator. Also, this element generates alarms on the relevant parameter
settings.

Fig.1. "Analog show" widget in the development and runtime modes (left to right).

Using - Development

This widget can be used by developer to create mimics to display the values of analog parameters and
PID regulators. To use it you need to add this widget to mimic and link to the data source parameter.

Using - Runtime

At runtime mode, you can obtain the passport for parameter by clicking the right mouse button on the
body of the widget. The passport will present all the properties of the parameter. Pressing the left mouse
button in the body of the widget the control panel will appear parameter, and the selection of this widget
will be displayed with blinking frame.

Linking attributes
ID Parameter Data type Config Config template Description

pErr Error String Input link Parametr|err

Code and text of the error of the parameter. It is
used to generate alarm. The following error codes
are processed:

• 1,2 - failure, parameter is not valid;
• 3 - above the admissible limit;
• 4 - below the admissible limit;
• 5 - above normal;
• 4 - below normal.

pModeA
Regulator mode
(auto) Boolean Input link Parametr|auto

When adjusted on the left of the value the large
letter "A" is displayed.

pModeC Regulator mode
(cascade)

Boolean Input link Parametr|casc When adjusted on the left of the value the large
letter "C" is displayed.

pName Parameter's name String Input link Parametr|NAME
Short name of the parameter displayed over the
value.

pPrec Precision Integer Input link Parametr|prec Number of decimal places for value.

pVal Parameter's value Real Input link Parametr|var Direct parameter's value.

redEVAL
Red parameter name
in case of failure Boolean Constant

By default, the color of the parameter's name for
the "failure" state(EVAL value) is gray. But some
critical for the process parameters must have the
"failure" state displayed with the red parameter's
name.

spName Speech name String Constant
The name of the parameter for speech synthesis
during the formation of alarm messages taking into
account accents of words, pauses, etc.

Main elements library of the user interface 216

 2. Analog show 1 (anShow1)
The element, shown in Fig. 2, is used to display the current value of the analog parameter with a one-

character prefix of the type of measured value.

Fig.2. "Analog show 1" widget in the development and runtime modes (left to right).

Using - Development

This widget can be used by developer to create mimics to display the values of analog parameters. o use
it you need to add this widget to mimic and link to the data source parameter.

Linking attributes

ID Parameter
Data
type Config Config template Description

pName Parameter's name String Constant Parametr|NAME One-character prefix of the type of
measured value.

pVal Parameter's value Real Input link Parametr|var Direct parameter's value.
pPrec Precision Integer Input link Parametr|prec Number of decimal places for value.

Main elements library of the user interface 217

 3. Element cadr (ElCadr)
The element, shown in Fig. 3, is essentially a universal control panel of various devices:

• analogue: indications, manual input values and regulators (analog and pulse);
• discrete: valves, automatic shut off valves, motors, fans and switches.

Fig.3. "Element cadr" widget in the development mode.

Using - Development

This widget is not intended for special placement and configuration of the user, as laid down in the
"Signal groups" template and if the new project is created from this template, the call of the widget is done
automatically, with its display in the control panel area when you select a widget of the parameter, which
provides the parameter's control, for example, previously considered "anShow ".

Main elements library of the user interface 218

Using - Runtime

Fig. 4 shows various examples of this element in the runtime mode.

Fig.4. "Element cadr" widget in the runtime mode.

Modes:
• Indications of the analog parameter. In this mode, there is no any control, and there are only units
displaying, the value's histogram and the name of the parameter.
• Manual input of an analog parameter. In addition to displaying indications of analog parameters
the buttons to enter a new value are displayed. Enter of the value is displayed in the field at the top,
in the white rectangle. To validate the input, press the left mouse button in the area of white
rectangle. Without validation the typed value will be reset after a few seconds.
• PID regulator's mode. To the value of a variable and its histogram are added values and
histograms of set point and out of the PID regulator, the buttons to enter a new value of the set point
or out, as well as the mode adjustment button and the field to display the current mode. Also, for the
user with appropriate privileges it is available the button to go to the frame to set the coefficients of
PID regulator. In the case of pulsed PID instead of histogram of the analog output it is displayed the
status of pulse output with the help of triangles "Up" and "Down" and the manual entry of output
leads to direct formation of pulse, respectively down or up.
• Mode of a discrete device. In this mode the name of the parameter and the field of discrete
building of the parameter are displayed. The field of discrete building contains the current state of
discrete device on the left and the buttons of commands on the right. There are two states of the
device: "Open", "Closed" and the three commands: "Open", "Close", "Stop". The names of states
and commands can be adjusted during set up. Changing the state of the logic device is determined
by pressing the corresponding command.

Every action on this panel (change of PID set point, state of the discrete parameter ...) is recorded in the
actions log by the generation of appropriate messages.

For any displayed or controlled parameter the passport can be obtained in runtime mode by clicking the
right mouse button on the contour field. The passport will present to all the properties of the parameter.

Main elements library of the user interface 219

Linking attributes

ID Parameter Data
type

Config Config template Description

prmId Parameter:identifier String Input link Parametr|SHIFR
Parameter's identifier is used to place the
record the operator's actions to the report.

prmShifr Parameter:code String Input link Parametr|NAME Short name of the parameter, code. It is
placed below the frame.

prmDescr Parameter:description String Input link Parametr|DESCR
Description of the parameter is used to
place the record the operator's actions to
the report.

prmColor Parameter:border color String Input link Parametr|color Sets the border color of the contour.

Parameters of Analog Device

prmDemention Parameter:dimension
variable

String Input link Parametr|ed

prmPrec Precision Integer Input link Parametr|prec

Number of decimal places in parameter,
step change for the manual input of
values, as well as set point and out of the
PID regulator.

prmVar Parameter:variable Real Full link Parametr|var Directly to the analog value of the
parameter.

max Parameter:maximum Real Input link Parametr|max Upper limit value of the parameter.

min Parameter:minimum Real Input link Parametr|min Minimum limit values of the parameter.

prmAMax Upper alarm border Real Input link Parametr|aMax

prmAMin Lower alarm border Real Input link Parametr|aMin

prmWMax Upper warning border Real Input link Parametr|wMax

prmWMin Lower warning border Real Input link Parametr|wMin

Manual Analog Input

prmVarIn
Parameter:variable
input Real Full link Parametr|varIn

Output for manual input of an analog
value of the parameter. The presence of
this parameter is an indication that the
parameter - is determined as "Manual
analog input.

PID regulator

prmAnalog
Parameter:analog
regulator Boolean Input link Parametr|analog

Sign of the analog regulator, in case of the
absence of this parameter the regulator is
an analog one.

prmAuto Parameter:automate Boolean Full link Parametr|auto Mode of the regulator, "Automatic".

prmCasc Parameter:Cascade Boolean Full link Parametr|casc Mode of the regulator, "Cascade".

prmSp Parameter:set point Real Full link Parametr|sp
PID regulator's set point, it can be set by
the user.

prmImpQdwnTm Parameter:imp. out
down

Boolean Input link Parametr|impQdwn Output "Down" for impulse regulator.

prmImpQupTm Parameter:imp. out up Boolean Input link Parametr|impQup Output "Up" for impulse regulator.

prmOut Parameter:output Real Full link Parametr|out
Analog PID regulator output for display
and manual input of the output value of
PID in manual mode.

prmManIn Parameter:manual input Real Full link Parametr|manIn
Manual input of the new output value of
PID regulator in manual mode.

Parameters of discrete devices

prmCom
Parameter: Command -
"Open" Boolean Full link Parametr|com

prmClose Parameter: Command -
"Close"

Boolean Full link Parametr|close

prmStop
Parameter: Command -
"Stop" Boolean Full link Parametr|stop

prmOpenSt Parameter: State -
"Opened"

Boolean Input link Parametr|st_open

Main elements library of the user interface 220

ID Parameter Data
type

Config Config template Description

prmCloseSt
Parameter: State -
"Closed" Boolean Input link Parametr|st_close

digComs Parameter:digital
commands

String Input link Parametr|digComs

Names and colors of buttons of commands
in the format: {On}[-color]:{Off}[-color]
[:{Stop}[-color]]. Default colors are:
green, red and yellow.

digStts Parameter:digital states String Input link Parametr|digStts
Names and colors of labels of states in the
format: {On}[-color]:{Off}[-color].
Default colors are: green and red.

Main elements library of the user interface 221

 4. Contours group (grpCadr)
Element, shown in Fig. 5, provides for simultaneous monitoring and control of several contours up to

eight, includes both instances of the widget "Element cadr for each contour, and a widget "Diagram" to
monitor the trends of the contours and viewing history .

Fig.5. "Contours group" widget in the development mode.

Using - Development

This widget is designed to perform the role of page-template, and should therefore be placed directly in
the project's tree. The project-template "signal groups" for each signal object that widget-frame is included
in the role of a template that allows you to create on its basis a set of pages of groups of contours. For each
widget-frame, it can be connected up to eight parameters by setting the links. Contours for which there is no
set links will be hidden at runtime.

Using - Runtime

In runtime mode, the contours and trends, for which links have been set, are displayed. Control of the
parameters by contours, respectively described in detail in the section of the "Element cadr (ElCadr)"
widget. In addition to this you can control the trends display properties, which requires the left mouse
button to click in the trend's area and by means of appeared trend's control panel to make the necessary
actions.

Fig. 6 is an example of this element in the runtime mode.

Main elements library of the user interface 222

Fig.6. "Contours group" widget in the runtime mode.

Linking attributes

ID Parameter Data type Config Config template Description
grpName Group name String Constant Group's name
Element {n} from 1 to 8.
el{n} The list of linking parameters corresponds to the list of the "Element cadr (ElCadr)" widget

Main elements library of the user interface 223

 5. Views page's element (ElViewCadr)
Element, shown in Fig. 7, serves as the basis for overview frames panel and is not usually used

independently. Element reflects the text information about a parameter in the form of the name and value,
and a graph (trend) of the parameter for a small (adjustable) period of time to observe the current trend of
the parameter with auto-scaling on the value's scale.

Fig.7. "Views page's element" widget in the development mode.

Using - Development

Though this widget is not intended for independent use, in isolation from frames panel, it can be used,
for example, by placing it to the mimic and linking with the data source parameter.

Using - Runtime

At runtime mode, you can obtain the passport for parameter by clicking the right mouse button on the
body of the widget. The passport will present all the properties of the parameter. Pressing the left mouse
button in the body of the widget the control panel will appear parameter, and the selection of this widget
will be displayed with blinking frame.

Fig. 8 shows various examples of this element in the runtime mode.

Fig.8. "Views page's element" widget in the runtime mode.

Linking attributes

ID Parameter Data type Config Config template Description

name Name String Input link Parametr|NAME
Parameter name, code, for display in the
name's field.

addr Address Address Input link Parametr|var Address to the attribute of the parameter's
values for trend's building.

var Variable Real Input link Parametr|var
Direct value of the parameter to display in
value's field.

Main elements library of the user interface 224

 6. Overview frames panel (ViewCadr)
Element, shown in Fig. 9, serves to show the current trends for the parameters of the signal object up to

24 pieces, supports scaling elements depending on their number. Consists of widgets "views page's element
(ElViewCadr)".

Fig.9. "Overview frames panel" widget in the development mode.

Using - Development

This widget is designed to perform the role of template-page, and should therefore be placed directly in
the project's tree. The project-template "signal groups" for each signal object that widget-frame is included
in the role of a template that allows you to create on its basis a set of pages of groups of overview frames
panel. To each widget-frame can be connected to the 24-parameter by setting the links. Trends for which
there is no set links will be hidden at runtime, and when it is necessary the expansion and scaling of linked
ones will be done to fill the area of the widget.

Main elements library of the user interface 225

Using - Runtime

In the runtime mode the trends' contours are displayed, for which links have been set. Control of the
parameters from contours, respectively described in details in the section "views page's element
(ElViewCadr)" widget.

Fig. 10 shows an example of this element in the runtime mode.

Fig.10. "Overview frames panel" widget in the runtime mode.

Linking attributes

ID Parameter Data type Config Config template Description
name Name String Constant Frame's name
Element {r}_{c}, where {r} - rows from 1 to 4 and {c} - columns from 1 to 6.

el{r}_{c}
The list of linked parameters corresponds to the list of ones of the "Views page's element
(ElViewCadr)" widget

Main elements library of the user interface 226

 7. Graphics group element (ElViewGraph)
Element, shown in Fig. 11, is provided to create graphics groups. Element contains information about a

parameter, the regulator's mode if the parameter is such, the units of analog parameter, as well as the color
corresponding to the parameter's trend.

Fig.11. "Graphics group element" widget in the development mode.

Using - Development

Though this widget is not intended for independent use, in isolation from graphics groups, it can be used,
for example, by placing it to the mimic and linking with the data source parameter.

Using - Runtime

At runtime, except the available visual data, provided by a number of control elements:
• "Selection" — by pressing the left mouse button in the area of the widget will appear right
control panel, and choice of the widget will display a flashing border.
• "Hide/Show" — by double-clicking on the widget it is changed to show or hide a graph of a
given element.
• "Context menu functions" — by context menu allowed some functions:

• "Passport" — getting passport for the parameter. In the passport will present all it
properties.
• "Hide/Show" — switching display or hide a graph of a given element, like a double click.
• "Show (single)" — a single graph showing for selected item in its native scale, by hiding
all other elements in group.
• "Show (All)" — showing all graphs the parameters in group.
• "Select" — call parameter selection dialog from a list available to choose, from the
attribute "Allow for select parameters" of this or the root widget. This item is available only
in the presence of the selection list.

Fig. 12 shows various examples of this element in the runtime mode.

Fig.12. "Graphics group element" widget in the runtime mode.

Linking attributes

ID Parameter
Data
type Config

Config
template Description

name Name String Input link Parametr|
NAME

Parameter name, code, for display
in the name's field.

addr Address Address Input link Parametr|var
Address to the attribute of the
parameter's values for trend's
building.

color Trends color String Constant
Parameters of Analog Device
ed Dimension String Input link Parametr|ed

Main elements library of the user interface 227

http://wiki.oscada.org/HomePageEn/Using/GraphicElementsLibraries/MainElements?v=rvi#h1039-75
http://wiki.oscada.org/HomePageEn/Using/GraphicElementsLibraries/MainElements?v=rvi#h1039-48
http://wiki.oscada.org/HomePageEn/Using/GraphicElementsLibraries/MainElements?v=rvi#h1039-10

ID Parameter Data
type

Config Config
template

Description

prec Precision Integer Input link Parametr|prec
Number of decimal places in
parameter.

max Maximum Real Input link Parametr|max Upper limit value of the
parameter.

min Minimum Real Input link Parametr|min
Minimum limit values of the
parameter.

aMax Upper alarm border Real Input link Parametr|aMax
aMin Lower alarm border Real Input link Parametr|aMin
wMax Upper warning border Real Input link Parametr|wMax
wMin Lower warning border Real Input link Parametr|wMin

pModeA "Automate" regulator's
mode

Boolean Input link Parametr|auto Mode of the regulator,
"Automatic".

pModeC
"Cascade" regulator's
mode Boolean Input link Parametr|casc Mode of the regulator, "Cascade".

Parameters of discrete devices

digComs Digital commands String Input link Parametr|
digComs

Names and colors of buttons of
commands in the format: {On}[-
color]:{Off}[-color][:{Stop}[-
color]]. Default colors are: green,
red and yellow.

digStts Digital states String Input link Parametr|
digStts

Names and colors of labels of
states in the format: {On}[-color]:
{Off}[-color]. Default colors are:
green and red.

digRevers Revers Boolean Constant Discrete signal reverse.

Main elements library of the user interface 228

 8. Graphics group (grpGraph)
Element, shown in Fig. 13, is provided for simultaneous observation of a trend and control the

parameters of the signal object, includes both instances of the widget "Graphics group element
(ElViewGraph) " for each parameter and widget "Diagram" to monitor the parameters' trends and browsing
history, and also scroll bar for fast navigation on allowed history of selected parameters for show.

Fig.13. "Graphics group" widget in the development mode.

Using - Development

This widget is designed to perform the role of page-template, and should therefore be placed directly in
the project's tree. The project-template "signal groups" for each signal object that widget-frame is included
in the role of a template that allows you to create on its basis a set of pages of graphics group. For each
widget-frame, it can be connected up to eight parameters by setting the links. Trends for which there is no
set links will be hidden at runtime or allowed for user's selection at case allowing parameters for selection
list in attribute "Allow for select parameters" (list format described into parameters selection dialog).

Main elements library of the user interface 229

http://wiki.oscada.org/HomePageEn/Using/GraphicElementsLibraries/MainElements?v=rvi#h1039-75
http://wiki.oscada.org/HomePageEn/Using/GraphicElementsLibraries/MainElements?v=rvi#h1039-45
http://wiki.oscada.org/HomePageEn/Using/GraphicElementsLibraries/MainElements?v=rvi#h1039-26
http://wiki.oscada.org/HomePageEn/Using/GraphicElementsLibraries/MainElements?v=rvi#h1039-26

Using - Runtime

In runtime mode, the trends, for which links have been set, are displayed. Control of the parameters from
the text elements of the trends, respectively described in detail in the section of the "Graphics group
element (ElViewGraph)" widget. In addition to this you can control the trends display properties, which
requires the left mouse button to click in the trend's area and by means of appeared trend's control panel to
make the necessary actions.

Fig. 14 shows an example of this element in the runtime mode.

Fig.14. "Graphics group" widget in the runtime mode.

Linking attributes

ID Parameter Data type Config Config template Description
grpName Group name String Constant Group name
Element {n} from 1 to 8.

el{n} The list of linking parameters corresponds to the list of the "Graphics group element
(ElViewGraph)" widget

Main elements library of the user interface 230

 9. Result graphic's element (ResultGraphEl)
Element, shown in Fig. 15, is provided to create result graphics. Element allows you to display trends on

the five parameters for a specified period of time till the current time.

Fig.15. "Result graphic's element" widget in the development mode.

Using - Development

Though this widget is not intended for independent use, in isolation from result graphics, it can be used,
for example, by placing it to the mimic and linking with the data source parameter.

Fig. 16 shows an example of this element in the runtime mode.

Fig.16. "Result graphic's element" widget in the runtime mode.

Linking attributes

ID Parameter Data
type

Config Config template Description

title Title String Constant
It is displayed above the graph. If
the title is missing the trend's field
will expand up.

Trend {n} from 1 to 5.

p{n}_addr
Parameter{n}:a
ddress Address Input link Parametr_{n}|var

Address to the value's attribute for
{n} trend's building.

p{n}_clr Parameter{n}:c
olor

Color Constant Parametr_{n}

p{n}_max
Parameter{n}:
maximum Real Input link Parametr_{n}|max Upper limit of the trend.

p{n}_min Parameter{n}:
minimum

Real Input link Parametr_{n}|min Lower limit of the trend.

p{n}_name
Parameter{n}:n
ame String Input link Parametr_{n}|NAME

The short name of the parameter
to display in the field on the left.

Main elements library of the user interface 231

 10. Result graphics (ResultGraph)
Element, shown in Fig. 17, is used to display the trends of the parameters of the whole visualization

project.

Fig.17. "Result graphics" widget in the development mode.

Using - Development

This widget is designed to perform the role of page-template, and should therefore be placed directly in
the project's tree. In the project-template "signal groups" on the root page level there is special virtual page
"Result graphics" with the result graphics template, that allows you to create on its basis a set of pages of
result graphics. To each widget-frame can be connected to the 16*5 parameters by setting the links. Trends,
for which there is no set links, will be hidden at runtime, and when it is necessary the expansion and scaling
of linked ones will be done to fill the area of the widget.

Main elements library of the user interface 232

Using - Runtime

In runtime the contours of the trends, for which the links are set, are displayed.

Fig. 18 shows an example of this element in the runtime mode.

Fig.18. "Result graphics" widget in the runtime mode.

Linking attributes

ID Parameter Data type Config Config template Description
grpName Group name String Constant Group name
Element {n} from 1 to 16.

el{n}
The list of linking parameters corresponds to the list of the "Result graphic's element
(ResultGraphEl)" widget.

Main elements library of the user interface 233

 11. Regulator's control panel (cntrRegul)
Element, shown in Fig. 19, is used for adjustment of PID regulator, includes information about the

parameter-regulator, fields of the regulator's settings, and the "Diagram" widget to monitor the trends of the
regulator and browsing history.

Fig.19. "Regulator's control panel" widget in the development mode.

Using - Development

This widget can be used as a panel, called from the control of panel of the parameters "ElCadr", as well
as a template-page. Widget should be placed directly in the project's tree, namely to the panels' container,
where the dynamic linking will be implemented to the regulator's parameter. To create the static list of the
regulator's settings contours, with the possibility of paging in it, you must place them in a container of
regulator's contours "greg" of each signal object and statically link them with the corresponding parameter,
and to ensure equality of the panel's ID and linked parameter.

Using - Runtime

In the runtime mode the following fields are displayed:
• name of the regulator's parameter;
• field with the properties of regulator consisting of: identifier, name, description, units, set point,
variable output, scale and mode;
• coefficients of regulator's settings: Kp, Ki, Ti, Kd, Td, Tzd, Zi, H1, H2, K1, K2, K3, K4, Tpl,
Tml и Rfkt.
• area of the diagram with displaying trends: variable (green), set point (blue), the analog output
(cyan), regulator's mode "Automatic" (magenta) and digital outputs.

Main elements library of the user interface 234

Users have the ability to change the PID regulator's coefficients: mode, set point, out and immediately to
see the reaction on the diagram. In addition, the user can learn the history of the regulator, which requires
the left mouse button click in the graph area and by means of appeared trend's control panel to make the
necessary navigation actions. To return the control panel of the parameter the left mouse button to click in
an empty area of the frame is required.

Fig. 20 shows an example of this element in the runtime mode.

Fig.20. "Regulator's control panel" widget in the runtime mode.

Linking attributes

ID Parameter Data type Config Config template Description

SHIFR Code String Input link Parameter|SHIFR

NAME Name String Input link Parameter|NAME

DESCR Description String Input link
Parameter|
DESCR

max Scale maximum Real Input link Parameter|max

min Scale minimum Real Input link Parameter|min

ed Units String Input link Parameter|ed

prec Precision Integer Input link Parametr|prec
Number of decimal places in value and
set point of the PID.

var Variable String Input link Parameter|var

var_addr Variable address Address Input link Parameter|var
Address for the trend's building of the
value.

PID - regulator

auto_addr Mode Address Input link Parameter|auto
Address for the "Automate" mode
trend's building.

Main elements library of the user interface 235

ID Parameter Data type Config Config template Description

sp Set point Real Input link Parameter|sp

sp_addr Set point address Address Input link Parameter|sp Address for the trend's building of the
set point.

out Out Real Input link Parameter|out

out_addr Out address Address Input link Parameter|out Address for the trend's building of the
analog output.

Hdwn Bottom output border Real Full link Parameter|Hdwn
Restricting the values of the analog
output on the bottom.

Hup Top output border Real Full link Parameter|Hup Restricting the values of the analog
output on the top.

Kp Gain coefficient Real Full link Parameter|Kp

Ki Coeff. of integration Real Full link Parameter|Ki

Ti Integration time Real Full link Parameter|Ti

Kd Coeff. of differential Real Full link Parameter|Kd

Td Differentiation time Real Full link Parameter|Td

Tzd Differential part lag time Real Full link Parameter|Tzd

Zi Insensitivity area Real Full link Parameter|Zi

K1 Input 1 coefficient Real Full link Parameter|K1

K2 Input 2 coefficient Real Full link Parameter|K2

K3 Input 3 coefficient Real Full link Parameter|K3

K4 Input 4 coefficient Real Full link Parameter|K4

Pulse PID - regulator

impQup_addr
Address of impulse output
up Address Input link

Parameter|
impQup

Address for the trend's building of the
pulse output "Up".

impQdwn_addr Address of impulse output
down

Address Input link Parameter|
impQdwn

Address for the trend's building of the
pulse output "Down".

KImpRfact Rate factor Real Full link
Parameter|
KImpRfact

The asymmetry in the generation of
pulse-width up and down.

TImpMin Minimal impulse time Integer Full link Parameter|
TImpMin

There will be generated impulses,
starting with the specified width.

TImpPer Impulses period Integer Full link
Parameter|
TImpPer

Frequency of repetition of pulse
generation.

Main elements library of the user interface 236

 12. Root page (SO) (RootPgSo)
The "Root page" element, shown in Fig. 21, serves as the basis for creating the process control user

interfaces, grounded on the signal object. The root page contains four areas:
• "Buttons-indicators area of the signal objects" (above) — is to provide information on the
availability of alarms in the signal object and also to switch between them.
• "Buttons-modes of presentation area" (right-top) — indication of the selection and selection the
presentation modes, such as: "Mnemo", "Graphics group", "Contours group", "Documents", etc. It
also contains the quittance buttons that appear in the event of alarms and the page turning button of
the mnemonic schemes.
• "Container of the mnemonic schemes and the basic frames of the operator interface" (center) —
region of the container to place mnemonic schemes and basic frames at their selection by
presentation modes buttons or at the change of the signal object.
• "Control panels container" (right-bottom) — region of the container to place control panels of
various objects in the container of mnemonic schemes, for example: panel of the parameter,
document, graphic (trend), etc.

Under control panels container placed button for demo mode start — mode on which performed periodic
switching for representative frames, changing regime and other operations by scenario.

Fig.21. "Root page (SO)" widget in the development mode.

Main elements library of the user interface 237

Using - Development

This widget can be used only in the root page mode that should be placed in the project's tree as an
element "/*/so". In addition, around the main page should be made following tree hierarchy:

• "/*/control" - logical container containing a variety of control panels;
• "/*/so/{n}" - logical container of the signal object {n} (1 ... 16) contains the containers and the
templates of presentation modes;
• "/*/so/{n}/mn" - logical container of the mnemonic schemes of the signal object contains many
pages of final mnemonic schemes;
• "/*/so/{n}/ggraph" - graphics group template contains many pages of final graphics groups;
• "/*/so/{n}/gcadr" - contours group template contains many pages of final contours groups;
• "/*/so/{n}/gview" - overview frames panel template contours group overview frames groups;
• "/*/so/{n}/doc" - document's logical container contains many pages of the final documents;
• "/*/so/{n}/greg" - PID regulator's control panel page's template contains many pages of final PID
regulators, statically linked;
• "/*/so/rg" - logical container result graphics - summary graphics for the operator interface;
• "/*/so/rg/rg" - result graphics template contains many pages of final result graphics.

At demo mode present you should into attribute "Procedure play demo" describe demo procedure on
internal language OpenSCADA DAQ.JavaLikeCalc. For example bellow led demo procedure of "Dynamic
model AGLKS":

stepCur++; stepTm = 20;
//>> Open main mnemo
if(stepCur == 0)
{

this.pg_1.pg_mn.pg_1.attrSet("pgOpen",true);
this.attrSet("tipStatus","Main mnemo open.");

}
//>> Open main graphics
else if(stepCur == 1)
{

this.pg_1.pg_ggraph.pg_1.attrSet("pgOpen",true);
this.attrSet("tipStatus","Main graphics open.");

}
//>> Setpoint set more for PC KRD1
else if(stepCur == 2)
{

SYS.DAQ.BlockCalc.Anast1to2node_cntr.PC_КРД1.sp.set(6);
this.attrSet("tipStatus","The regulator PC_KRD1 setpoint increase.");

}
else { stepCur = -1; stepTm = 0; }

If there is no demo mode need to on the project page, the frame, turn off the button to start the
demonstration and the field of control panels extend.

Main elements library of the user interface 238

http://wiki.oscada.org/HomePageEn/Using/ModelAGLKS?v=gnj
http://wiki.oscada.org/HomePageEn/Using/ModelAGLKS?v=gnj
http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc?v=kx0

Using - Runtime

In the runtime mode, the user can select the desired from available signal object (Ctrl+1...0), select the
type of presentation (Ctrl+M,G,C,V,D,R), make the quittance of alarms, and also cause the control panel
for the the desired element. After choosing, the user is presented the mnemonic scheme or common frame
in the mnemonic schemes container and control panel in the control panels container. Then the user can
observe the state on mnemonic schemes and panels, as well as to the make actions provided by them.

Fig. 22 shows an example of this element in the runtime mode.

Fig.22. "Root page (SO)" widget in the runtime mode.

Main elements library of the user interface 239

 13. Passport (cntrPasp)
Element, shown in Fig. 23, is provided for displaying the parameter's passport: detailed information,

including code, description, units, alarm borders, etc. Document is generated entirely dynamically.

Using - Development

This element should be placed in a logical container of the project's tree. In development mode, the
widget is a blank "Document", and therefore the only screen shot with this widget in the runtime mode of
the project is provided. Linking with the parameter is made dynamically when you call "Passport" for the
visual elements of the parameter.

Using - Runtime

Calling the passport is made from the visual elements of parameter, for example: by right click of the
mouse on the element "analog parameter" (anShow) and on the field of the "element cadr" widget
(ElCadr) . After a call the separate window of the widget-passport with a list of all properties and values of
the parameter as a table is opened.

Fig.23. "Passport" widget in the runtime mode.

Linking attributes

ID Parameter Data type Config Config template Description

pName Parameter's
name

Address Input link Parametr|NAME
Address to the parameter's name to refer
to the parameter entirely and get all of its
properties

Main elements library of the user interface 240

 14. Document panel (doc_panel)
Element, shown in Fig. 24, is used to manage documents and navigate through their histories. The

element supports dynamic and archival documents.

Fig.24. "Document panel" widget in the development mode.

Using - Development

This element should be placed in a logical panels' container of the project's tree. Linking with the
parameter is dynamic when called from the document's element.

Using - Runtime

Call of the panel is made from elements of the document. The panel provides tools that are somewhat
different for dynamic and archival documents.

For dynamic document the following tools are provided:
• selection the time of the document's formation;
• selection the size of the document's formation;
• navigation through the document for one or five sizes of it;
• adjustment the time of generation of the document at the current time.

Archival document provides only navigation through documents in the archive by listing them, and
display current and overall documents.

Main elements library of the user interface 241

Fig. 25 shows examples of this element in the runtime mode: dynamic (left) and archival (right).

Fig.25. "Document panel" widget in the runtime mode.

Linking attributes

ID Parameter Data type Config Config template Description

Dinamic document

time Document time DateTime Full link <page>|time

bTime Document begin DateTime Full link <page>|bTime

doc Document String Full link <page>|doc

Archive document

n Archive size Integer Full link <page>|n

vCur View cursor Integer Full link <page>|vCur

aCur Archive cursor Integer Input link <page>|aCur

aSize Archive size Integer Input link <page>|aSize

Main elements library of the user interface 242

 15. Graphics group panel (grph_panel)
Element, shown in Fig. 26, serves to control the "Diagram" widget, it allows you to view trends' history

for the required period of time and the desired resolution, the scale, the selection of archiver for display and
trends' presentation in a range of present frequencies are supported.

Fig.26. "Graphics group panel" widget in the development and runtime modes (left to right).

Using - Development

This element should be placed in the logical container of the project's tree. Linking with the parameter is
dynamic when called from a diagram element.

Using - Runtime

Calling the panel is made from the diagram elements. The panel provides the following tools:
• time selection of the diagram formation;
• navigation through the diagram for the one or five sizes;
• adjustment of the diagram generation time to the current time;
• information about the time or frequency in the current cursor's position;
• selection of the diagram trends' presentation as the spectrum of frequencies;
• selection of the trend's formation size;
• selection of the archive, used for the trends' presentation;
• control the vertical scale of the presentation: zoom in and out the scale, shift the scale up and
down, the scale returns to its original value.

Main elements library of the user interface 243

Linking attributes

ID Parameter Data type Config Config template Description
tSek Trend time DateTime Full link <page>|tSek

tSize Trend size Real Full link <page>|tSize Temporal size of the trend in the
history from the time of the trend.

trcPer Trace period Integer Full link <page>|trcPer Renewal period of the trend.

type Type String Full link <page>|type Trend's type: regular or the frequency
spectrum.

valArch Archiver String Full link <page>|valArch
curSek Cursor DateTime Full link <page>|curSek Time of the cursor.
curUSek Cursor, usec Integer Full link <page>|curUSek Time of cursor, microseconds.
sclVer Vertical scale Real Full link <page>|sclVerScl The percentage of vertical scale.

sclVerOff
Vertical scale
offset Real Full link

<page>|
sclVerSclOff

Percentage of the offset on the
vertical scale.

Main elements library of the user interface 244

 16. Terminator panel (terminator)
Element, shown in Fig. 27, serves to fill the empty place when no item is selected for control.

Fig.27. "Terminator panel" widget.

Using - Development

This element should be placed in the logical container of the project's tree.

Using - Runtime

Calling the panel is made from root page "RootPgSo" by changing the signal object or presentation
mode.

Main elements library of the user interface 245

 17. Prescription: editing (prescrEdit)
An element, shown in Fig. 28, is one of the two frames for working with the prescriptions, which serves

for the user-editing of prescription-programs.

The prescription-program is a sequentially call of the function's blocks - commands (macros), taking up
to five arguments and return string, with result code at begin: "Working" (0), "Finished" (> 0) and "Error"
(<0). Calling the step command is made in a loop until the "Working" (0) result is returned. Jump to the
next step is made in the case of "Finished" (> 0) result. In the case of error, the "Error" (<0) result, the
execution of the prescription is terminated. Prescription's execution can made in the visualization interface
session or into separated prescriptions executor.

Macro-commands, which user can choose during the formation of a prescription-program, are formed by
the programmer of SCADA-system under the specific application area by editing the commands table in the
OpenSCADA. Table of commands is placed to the accessible in the specific OpenSCADA configuration
database. As an example, this table is placed to the database of the library with the name "PrescrComs".
Table of command has the following structure PrescrComs = (name, proc, arg1, arg2, arg3, arg4, arg5),
where:

• name — the name of macro-command.
• proc — the text of the macro-command procedure. The procedure in the first line contains the
name of the program language, at the moment it is only "JavaLikeCalc.JavaScript", and the program
text directly after the language. In the procedure of a macro-command the following context
parameters are available:

• rez — result of the command, by default it returns "Work" ("").
• f_start — sign of the first procedure's execution.
• f_frq — frequency of periodic executions of the procedure.
• arg{1...5} — argument's 1..5 value.
• tmp{1...10} — temporary parameter's (step execution context) 1...10 value.

An example of code for the "Timer" command, which does not depend on the
application area:

JavaLikeCalc.JavaScript
if(f_start) tmp1 = arg1;
var curTm = tmp1.toReal();
if(curTm <= 0) { rez = "1:Wait elapsed for "+arg1+"s"; return; }
curTm -= 1/f_frq;
tmp1 = max(0,curTm);
rez = "0:Wait now for "+curTm+"s";

• arg{1...5} — label of the 1..5 argument. Only arguments with the label will be displayed when
editing the step of the prescription. Into the label you can set minimum and maximum borders of
numeric values of the argument into format "{Label}|{min}|{max}".

The several commands with the following names are reserved for special purposes:
• "Error" — is called after an error at the prescription's step.
• "Stop" — is called on stopping a prescription, on successful prescription finishing and on forced
shutdown by the user.

In the prescription-program formation process through the frame you are working with a table of
programs. As an example, this table is placed in the database of the library with the name "PrescrProgs".
Table of the programs has the following structure:
PrescrProgs = (name, prgTxt), Where:

• name — the name of the prescription-program.
• prgTxt — program text as an XML-tree. In the step command's tags there is the command name
(id) and user-specified values of the arguments (arg1 - arg5). For example, for the four-step
prescription:

<prg>
 <com arg1="10" id="Timer" />
 <com arg1="20" id="Timer" />
 <com arg1="10" id="Vacuum" />
 <com arg1="34" id="Enable coils" />

Main elements library of the user interface 246

</prg>

The "Prescription: editing" frame contains from left to right:
• "Library" — library with a list of programs and library's control tools.
• "Program" — the list of commands-steps of the selected in the library prescription-program with
the control tools.
• "Command" — the edit field of the selected step in the prescription, which contains the selection
of command and set the values of the available attributes, as well as button to save the changes.

Fig.28. The "Prescription: editing" frame in the development mode.

Using - Development

This frame should be placed in the mnemonic schemes or panels logical container of the project's tree.

For correct working of the frame it is necessary to copy an existing tables "PrescrComs" and
"PrescrProgs" from the database of the library to the desired database or create a new empty tables there by
SQL the commands in the desired DB, for example SQLite:

CREATE TABLE PrescrComs (name TEXT, proc TEXT, arg1 TEXT, arg2 TEXT, arg3 TEXT, arg4
TEXT, arg5 TEXT, PRIMARY KEY (name));

CREATE TABLE PrescrProgs (name TEXT, prgTxt TEXT, PRIMARY KEY (name));

Blank or copied commands table must be edited and filled with necessary commands in the DB "Table"
page.

After formation of the tables it is necessary in the links of the frame to set the values of the database with
tables and the names of tables themselves, and also to specify the name of the export/import file.

Main elements library of the user interface 247

http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual?v=ksv#h932-2
http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual?v=ksv#h932-2

Using - Runtime

In the runtime mode, the user can add new prescription-programs, delete, copy and export the existing
ones as well as to import prescriptions from other OpenSCADA stations. In the selected prescription-
program user can do: add or insert a new step, removing or reposition the selected step. For the selected
step of the prescription-program the user can set the command and enter values for the available
parameters-arguments of the selected command, and then to keep changes of the step.

Fig. 29 shows an example of a frame at runtime.

Fig.29. The "Prescription: editing" frame in the runtime mode.

Linking attributes

ID Parameter
Data
type Config

Config
template Description

dbComs DB:Commands String Constant DB Commands table name.

dbDB DB:Database String Constant DB
DB address with tables in view {DBType}.
{DBName}.

dbProgs DB:Programs String Constant DB Prescriptions-programs table name.

fileExpImp
Export/import
file String Constant File

User's prescriptions-programs file for
Export/Import.

Main elements library of the user interface 248

 18. Prescription: runtime (prescrRun)
An element, shown in Fig. 30, is one of the two frames for working with the prescriptions, which serves

to direct execution of programs-prescriptions or observe for execution into external program-prescription
executor, previously formed in the Prescription: edit frame.

The "Prescription: runtime" frame contains from left to right:
• "Start/stop/skip" — two buttons to start and stop the selected program and button for skip current
step execution.
• "Library" — library with a list of programs.
• "Program" — the document of the list of commands-steps of the selected in the library
prescription-program. During the execution in this field it is monitored the current state by the
appropriate highlight of the steps.

The executable prescription-program may be suspended by pressing the "Pause" button or interrupted by
pressing the "Stop" one. Also possible skip step by place to button "Skip" into step execution time.

On the any completion of the prescription-program the message with the parameters of the session is
generated, and archiving of the session's document is made. Message with the parameters of a session can
be used during viewing the message's archive, or to generate a list of sessions, for example, in the graphics
group to go to the history for the session's time. To view the reports history of program's execution you can
click on the document and browse on the appearing on the right navigation bar on archival document. By
default, the archive of documents is set to the depth of 10 documents.

Fig.30. The "Prescription: runtime" frame in the development mode.

Main elements library of the user interface 249

Using - development

This frame should be placed in the mnemonic schemes or panels logical container of the project's tree.

In the links of the frame it is necessary to set the database with the tables and the names of commands'
and programs' tables themselves as in the Prescription: editing, and also link to external execution
procedure of prescriptions, if that need.

To provide the possibility of execution the prescription in the background and finished sessions
archivation while the operator switches to another frame, it is necessary for the frame in the project's tree to
set the "Page: process not opened."

Using - Runtime

At the runtime mode the user can select the desired prescription-program and run-on execution and then
track the execution progress or switch to other frames. Executable program you can pause by pressing the
"Pause" button or terminate by pressing "Stop". Thereto you can skip current step execution by press button
"Skip". The user can review or print reports of previously executed prescriptions for what it is necessary to
press the left mouse button on the document and browse on the navigation bar through the archive of
executable prescriptions.

Fig. 31 shows an example of a frame at runtime mode.

Fig.31. The "Prescription: runtime" frame in the runtime mode.

Main elements library of the user interface 250

Linking parameters

ID Parameter Data type Config Config template Description

Generic configuration

dbComs DB:Commands String Constant DB Commands table name.

dbDB DB:Database String Constant DB
DB address with tables in view
{DBType}.{DBName}.

dbProgs DB:Programs String Constant DB
Prescriptions-programs table
name.

To external procedure linking. The external procedure realization example you can see into DB Dynamic model
"AGLKS"

prExtCurCom
Program (ext):current
command

Integer Input link External|curCom

prExtMode Program (ext):mode Integer Full link External|mode

prExtProg Program (ext):program String Full link External|prog

prExtStartTm Program (ext):start Integer Input link External|startTm

prExtWork Program (ext):work String Input link External|work

Main elements library of the user interface 251

http://wiki.oscada.org/HomePageEn/Using/ModelAGLKS?v=gnj
http://wiki.oscada.org/HomePageEn/Using/ModelAGLKS?v=gnj

 19. Acception (accept)
The "Acception" element, presented in Fig. 32 implements a simple operations' acception dialog. The

element contains a message with a question and two buttons "Apply" and "Cancel". The dialogue, for
example, is used in the frame Prescription: editing to accept the deleting operation.

Fig.32. The "Accept" frame in the development and runtime mode.

Using - development

This widget can be used by the developer to create dynamic interaction frames in operations that require
acception by the user. To use it you should add this item to the panels' logical container of the project's tree.
For interaction this widget is opened by the frame-initiator the result of it is dynamic linkage of the
dialogue with the "event" and "mess" attributes of the frame-initiator. The question message is taken from
the "mess" attribute, and the "dlg_Apply" signal is transmitted to the "event" at acception.

Using - Runtime

Calling the dialogue is made from the frame-initiator, and closing is made by pressing any button of the
dialog. If you click the "Apply" button the "dlg_Apply" signal will be sent to the frame-initiator, by which
it can perform the desired actions.

Linking parameters

ID Parameter
Data
type Config

Config
template Description

elEvent Element:event String Full link <page>|event It is used to send the "dlg_Apply" event if
accepted.

elMess Element:message String Input link <page>|mess
Source of the question message in the
dialogue.

Main elements library of the user interface 252

http://wiki.oscada.org/HomePageEn/Using/GraphicElementsLibraries/MainElements?v=rvi#h1039-63

 20. Graph's param select (graphSelPrm)
The "Selecting graph's parameter", shown in Fig. 33, implements the dialog to select the data source,

often the archive ones, for the formation of the trend in the "Graphics group" frame. Selection is provided
from the list, specified in the attribute "Available parameters for selection (allowSelLst)" of the frame-
initiator. For the selected source you can specify the name, scale, dimension and the color of the trend.

In the "Available parameters for selection (allowSelLst)" attribute the data sources should be placed in
the following way:

• "DAQ_Arh_addr[:Name[:min:max[:dim]]" — where:
• "DAQ_Arh_addr" — address of the parameter for the group linking or address of the
attribute with data from the "Data acquisition (DAQ)" subsystem, as well as the address of
the values' archive, for example:

• "/LogicLev/experiment/F3" — "F3" parameter address;
• "/DAQ/System/AutoDA/CPULoad/a_load" — "load" attribute address of the
"CPULoad" parameter;
• "/Archive/va_LC21_1_var" — address of the "LC21_1_var" archive.

• "Name" —the name of the source to display. At the group linking the name will be taken
from the "NAME" attribute.
• "min", "max" — display scale. At group linking the scale will be taken from the "min"
and "max" attributes, respectively. In the case of the scale absence (min >= max) the auto-
scale will be enabled.
• "dim" — dimension of the parameters to display. At the group linking it will be taken
from the "ed" attribute.

• "<varhs>" — template of the group selection, if you specify it all available archives in the
system will be included into the selection list.

Example of the "Available parameters for selection (allowSelLst)" attribute's contents:
/System/AutoDA/CPULoad/a_load:CPU Load:0:100:% /LogicLev/experiment/F3 <varhs>

Main elements library of the user interface 253

http://wiki.oscada.org/HomePageEn/Using/GraphicElementsLibraries/MainElements?v=rvi#h1039-30

Fig.33. The "Graph's param select" in the development and runtime mode.

Using - development

This frame should be placed to the panels' logical container of the project's tree. The "Available
parameters for selection (allowSelLst)" attribute must be defined with the list of sources according to the
rules described above in the "Graphics groups", which should provide the selection of the source by the
user. As a result, the "Select" item will appear in the context menu of the Graphics group element.

Using - Runtime

Calling the dialogue is made by the "Select" item of the the Graphics group element context menu. The
dialogue provides the user the possibility of selection the data source from the list, as well as an indication
of its basic parameters: name, scale, dimension, and color of the trend. When you accept the dialogue the
selected parameters are applied to the graphics group element chart, replacing the links.

Main elements library of the user interface 254

http://wiki.oscada.org/HomePageEn/Using/GraphicElementsLibraries/MainElements?v=rvi#h1039-26
http://wiki.oscada.org/HomePageEn/Using/GraphicElementsLibraries/MainElements?v=rvi#h1039-26
http://wiki.oscada.org/HomePageEn/Using/GraphicElementsLibraries/MainElements?v=rvi#h1039-30

Mnemonic elements library of the user interface
Name: mnEls
Founded: September 2007
Version: 0.5.0
State: Open (GPL)
Author: Roman Savochenko, Maxim Lysenko, Ksenia Yashina
Description: Provides the mnemonic elements library of the user interface.
Address: DB in the file: SQLite.vcaBase.wlb_mnEls (vcabase.db.gz)

The library is created to provide mnemonic elements of the user interface. The library is built on the
basis primitives of widgets and JavaLikeCalc module, allowing to create calculations on the Java-like
language.

It is possible to connect the library of mnemonic elements of user interface to the project of the
OpenSCADA station by downloading the attached file of the database, placing it in in the database
directory of the station's project and creating the database object for the DB module "SQLite", indicating
the database file in the configuration.

The library contains about fifty widgets, often sought after in the mnemonic schemes' formation of the
user interface of process control. Names of elements are available in three languages: English, Russian and
Ukrainian.

 1. Elements of the pipeline without a gradient fill
Below, in Fig. 1, there is provided a list of items with which you can build a pipeline of any complexity.

By default, they are filled with yellow, and their rotation angle is "0" degrees. By turning and scaling these
widgets you can get all the necessary combinations.

Fig.1. Elements of the pipeline from left to right: "Pipe-cross", "Line-pipe horizontal", "Line-pipe vertical",

"Arrow", "Back arrow", "Pipe_Ugol", "Pipe_pipe-tee".

Mnemonic elements library of the user interface 255

http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc?v=ptq
http://wiki.oscada.org/HomePageEn/Doc/VCAEngine?v=1b6o#h887-13
http://wiki.oscada.org/Using/GraphicElementsLibraries/files?get=vcabase.db.gz
http://wiki.oscada.org/YashinaKsenia?v=139q
http://wiki.oscada.org/HomePageEn/MaximLysenko?v=vwg
http://wiki.oscada.org/RomanSavochenko?v=blo

 2. Elements of the pipeline with a volume filling
Below, in Fig. 2, there is provided a list of items with which you can build a pipeline volume of any

complexity. By default, they are filled with yellow and semitransparent gray-scale images, and their
rotation angle is "0" degrees. Widgets are presented in four variants in accordance to the different rotation
angles.

Fig.2. Elements of the pipeline from left to right and top to bottom:

"Pipe-cross(volumed)", "Line-pipe horizontal(volumed)", "Vertical pipe line(volumed)",
"ArrowHR(volumed)", "ArrowHL(volumed)", "ArrowVB(volumed)", "ArrowVT(volumed)", "Back

arrowHL(volumed)", "Back arrowHR(volumed)", "Back arrowVB(volumed)", "Back arrowVT(volumed)",
"Pipe-angleBL(volumed)", "Pipe-angleBR(volumed)", "Pipe-angleTL(volumed)", "Pipe-

angleTR(volumed)" "Pipe-teeVR(volumed)", "Pipe-teeHB(volumed)", "Pipe-teeHT(volumed)", "Pipe-
teeVL(volumed)".

Mnemonic elements library of the user interface 256

 3. Elements, representing various technological devices
Below, in Fig. 3, there is provided a list of elements - images of technological devices, commonly used

in the construction of mimics of various technological processes. Some of them contain a script that
describes their actions. Most widgets have a square shape, allowing easy turning and scaling them if
necessary, the rotation angle of all the widgets is "0" by defaults.

Fig.1. Elements representing technological devices from left to right and top to bottom:

"Compressor", "Compressor 1", "Bolt", "Crane", "Ball crane", "Crane and position", "Three-positioned
crane", "Valve" "Cooler", "Cooler", "Separator", "Diaphragma", "Zmejev_hor".

Linking parameters for the "Ball crane" widget:
ID Parameter Data type Config Config template Description
"Ball crane" widget (El_Kran_Sh)
com Command Boolean Full link Parameter|com Open/close command.
shifr Code String Full link Parameter|NAME Parameter's name.
st_close State - "Closed" Boolean Full link Parameter|st_close Closed state.
st_open State - "Opened" Boolean Full link Parameter|st_open Opened state.
"Crane and position" widget (El_Kran_polozh)
out Position Real Input link Parameter|out Open/closure degree.
"Three-positioned crane" widget (Kran_3_pos)
out Position Real Input link Parameter|out Open/closure degree.
"Compressor" widget (Compressor)
com Command Boolean Full link Parameter|com Start/stop command.

The widgets "Ball crane", "Crane and position", "Three-positioned crane" have the processing, which is
to call the widget "Element cadr" when you press the left mouse button on the any fill from main elements
library of the user interface in the place of the control panel to make the control actions with the parameter,
which is linked to the one of those widgets.

Mnemonic elements library of the user interface 257

http://wiki.oscada.org/Using/GraphicElementsLibraries/MainElements?v=278
http://wiki.oscada.org/Using/GraphicElementsLibraries/MainElements?v=278

 4. The remaining elements, which can hardly be referred to a
particular group

Below, in Fig. 4, there is provided a list of remaining items in the library, they also can often be needed
in the construction of mimics. Some of them contain a script that describes their actions. Most widgets have
a square shape, allowing easy turning and scaling them if necessary, the rotation angle of all the widgets is
"0" by defaults.

Fig.4. Elements from left to right and top to bottom:

"Rounded rectangle", "Rounded rectangle (variant 2)", "Rounded rectangle(valuable)", "Scale", "Level",
"Line", "Alarming".

Linking parameters for the "Level" widget:
ID Parameter Data type Config Config template Description
max Maximum Real Input link Parameter|max Maximum scale.
min Minimum Real Input link Parameter|min Minimum scale.
var Value Real Input link Parameter|var Level value.

Mnemonic elements library of the user interface 258

Library of the electrical elements of the user's
interface mnemonic schemes

Name: ElectroEls

Founded: June 2009.

Version: 0.2.0

State: Open (GPL)

Author: Maxim Lysenko

Description: Provides the electrical elements library.

Source:
DB with the electrical elements library: SQLite.ElectroEls.wlb_ElectroEls
(ElectroEls.db.gz)

The library is created to provide mnemonic elements of the user interface. The library is built on the
basis primitives of widgets and JavaLikeCalc module, allowing to create calculations on the Java-like
language.

It is possible to connect the library of mnemonic elements of user interface to the project of the
OpenSCADA station by downloading the attached file of the database, placing it in in the database
directory of the station's project and creating the database object for the DB module "SQLite", indicating
the database file in the configuration.

The library contains about twenty widgets, often sought after in the mnemonic schemes' formation of the
user interface of process control in the electricity sector. Names of elements are available in three
languages: English, Russian and Ukrainian.

By default, all widgets have the scale on both axes, equal to "1", and their rotation angle - "0" degrees.
There is the ability to rotate, and scale of these widgets to specify the desired proportions.

 1. Dynamic items
Below, in Fig. 1, the list of different types circuit breakers and switches is provided.

Fig.1. Elements from left to right from top to bottom: "Switch plank(circle)", "Fuse-switch(circle)",

Library of the electrical elements of the user's interface mnemonic schemes 259

http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc?v=kx0
http://wiki.oscada.org/HomePageEn/Doc/VCAEngine?v=1b6o#h887-13
http://wiki.oscada.org/Using/GraphicElementsLibraries/files?get=ElectroEls.db.gz
http://wiki.oscada.org/HomePageEn/MaximLysenko?v=vwg

"Automatic switch plank(circle)", "Switch plank", "Fuse-switch", "Automatic switch plank", "Automatic
dual band switch", "Switch with the neutral central position", "Fuse-switch 2", "Switch".

Linking parameters
ID Parameter Data type Config Config template Description

Widgets: "Switch plank(circle)" (El_Key_1), "Fuse-switch(circle)" (El_Key_2), "Automatic switch
plank(circle)" (El_Key_3)

val Value Boolean Input link Parameter|val

Widgets: "Switch plank" (El_KeySqr_1), "Fuse-switch" (El_KeySqr_2), "Automatic switch plank"
(El_KeySqr_3), "Automatic dual band switch" (El_KeySqr_4), ""Fuse-switch 2" (El_KeySqr_6)

val Value Boolean Input link Parameter|var

DESCR Description String Input link Parameter|DESCR

st Error state Boolean Input link Parameter|st

Widget "Switch with the neutral central position" (El_KeySqr_5)

val Value Boolean Input link Parameter|var

val1 Value 1 Boolean Input link Parameter|var

st Error state Boolean Input link Parameter|st

Widget "Switch" (El_Key_h)

val Value Boolean Input link Parameter|val

Figure 2 shows examples of the same elements in the off position except the "Switch with the neutral
central position" widget.

Fig.2. Elements from left to right from top to bottom: "Switch plank(circle)", "Fuse-switch(circle)",
"Automatic switch plank(circle)", "Switch plank", "Fuse-switch", "Automatic switch plank", "Automatic

dual band switch", "Switch with the neutral central position", "Fuse-switch 2", "Switch".

Library of the electrical elements of the user's interface mnemonic schemes 260

 2. Static elements
Below, Fig. 3, Fig. 4 shows the static at the moment the elements of the library.

Fig.3. Static elements from left to right: "Coil", "Reactor", "Transformer", "Transformer with two
secondary windings", "Ground".

Fig.4. Static elements from left to right: "Battery", "Rectifier", "Direct current converter".

Library of the electrical elements of the user's interface mnemonic schemes 261

Module of subsystem “Archives”<FSArch>
Module: FSArch
Name: Arhivator on the file system
Type: Archive
Source: arh_FSArch.so
Version: 1.5.1
Author: Roman Savochenko

Description: Archive module. Provides archiving functions for messages and values on the file
system.

License: GPL

The module is designed for archiving messages and values of OpenSCADA on the file system.

Any SCADA system provides the ability to archive the collected data, i.e. formation of history of the
changes (dynamics) of processes. Archives conditionally can be divided into two types: archives of
messages and archives of values.

A feature of the archives of messages is that so-called events are archived. The characteristic feature of
the events is its time of occurrence. The archives of messages are usually used for archiving, messages in
the system, i.e. conducting of logs and reports. Depending on the source the messages can be classified
according to different criteria. For example, this may be the reports of emergency situations, the reports of
actions of the operators, reports of the glitches of connection and others.

A feature of the archives of values is their frequency, measured in the time lag between two adjacent
values. Archives of values are used for archiving the history of continuous processes. As the process is
continuous, it can only be archived by introducing the notion of quantization of time interviewing, because
otherwise we get the archives of infinite dimensions in view of continuity of the nature of the process. In
addition, practically, we can get value from the time limited by the data sources. For example, a fairly high-
quality data sources in the industry, are rarely allowed to receive data at a frequency of more than 1kHz.
And this is without taking into account of the sensors themselves, which have even less qualitative
characteristics.

For conducting of archives in the system OpenSCADA the subsystem «Archives» is provided. This
subsystem, according to the types of archives, consists of two parts: an archives of messages and archives
of values. The subsystem, in general, is a module that allows you to create archives based on the different
nature and methods of storing of data. This module provides a mechanism for the archiving on the file
system for both: for the flow of messages, and for the flow of values.

 1. Message Archiver
Archives of messages are formed by archiver. There can be the set of archivers, with individual settings,

allowing to share archiving of different classes of messages.

The archiver of messages of this module allows you to store data in XML files or in the flat-text format.
Markup language XML is a standard format that is easily understood by a lot of exterior applications.
However, opening and reviewing of the files in this format requires considerable resources. On the other
hand, the flat-text format requires far fewer resources, although not uniform, but also requires knowledge of
its structure to deal with.

In any case, both formats are supported and the user can select any of them in accordance with his
requirements.

Files of the archive are named by archivers based on the date of the first messages in the archive. For
example so: <2006–06–21 17:11:04. Msg>.

Module of subsystem “Archives”<FSArch> 262

Files of the archive can be limited in size and time. After exceeding the limit a new file is created.
Maximum number of files in a directory of the archiver can also be restricted. After exceeding the limit on
the number of files old files will be deleted!

In order to optimize the use of disk space archivers support package of old archives by gzip packer.
Packaging is made after a long non-use of the archive.

When you are using the archives in the form of XML, appropriate files are loaded entirely! For a long
time unused archives unloading timeout of access to the archive is used, after the exceeding of which the
archive is unloaded from memory and then is packaged.

Module provides additional settings for the archiving process (Fig. 1).

Fig.1. Additional settings of an archiving process of messages by module FSArch.

Those parameters include:
• XML archive files. — Enables archiving of messages in XML-format files, rather than plain text.
The use of XML-format archiving requires more RAM because is needed full download file, XML-
parsing and storing in memory at the time of use.
• Maximum archive file size, by kilobytes. — Sets a limit on the size of one archive file. Disable the
restriction can be by setting the parameter to zero.

Module of subsystem “Archives”<FSArch> 263

• Maximum files number. — Limits the maximum number of archive files and share with the size
of single file determines the size of archive on disk. Completely remove this restriction can be set to
zero.
• File's time size, by days. — Sets a limit on the size of a single archive file on time.
• Pack files timeout, by minutes. — Sets the time after which, in the absence of appeals, archive
files will be packaged in gzip archiver. Set to zero for disable packing by gzip.
• Check archives period, by minutes. — Sets the frequency of checking the archives for the
emergence or delete new files in a directory of archives, as well as exceeding the limits and
removing old archive files.
• Use info files for packed archives. — Specifies whether to create files with information about the
packed archive files by gzip-archiver. When copying files of archive on another station, these info
files can speed up the target station process of first run by eliminating the need to decompress by
gzip-archives in order to obtain information.
• Prevent duplicates. — Enables checks for duplicate messages at the time put a message in the
archive. If there is a duplicate the message does not fit into the archive. This feature some increases
the recording time to archive, but in cases of placing messages in the archive by past time from
external sources it allows to eliminate duplication.
• Check archivator directory now. — The command, which allows you to immediately start
checking the archives, for example, after manual changes to the directory archiver.

 1.1. File format of archive messages

The table below shows the syntax of the archive file based on the XML-language:

Tag Description Attributes Contains

FSArch
The root element.
Identifies the file as
belonging to the module.

Version — version of the archive file;
Begin — the start time for the archive (hex – UTC in

seconds from 01/01/1970);
End — the end time for the archive (hex – UTC in

seconds from 01/01/1970).

(m)

m
Tag of the single
message.

tm — time of creation of the message (hex – UTC in
seconds from 01/01/1970);

tmu — microseconds of message's time;
lv — message level
cat — category of message.

Text of
message

Archive file on the basis of the flat text consists of:
• header in the format: [FSArch <vers> <charset> <beg_tm> <end_tm>]

Where:
• <vers> — version of the archiving module;
• <charset> — code page of the file (usually UTF8);
• <beg_tm> — UTC start time for the archive from 01.01.1970, in hexadecimal form;
• <end_tm> — UTC end time for the archive 01.01.1970, in hexadecimal form.

• records of the messages in the format: [<tm> <lev> <cat> <mess>]
Where:

• <tm> — message time in format <utc_sec:usec>, where:
• utc_sec — UTC time from 01.01.1970, in hexadecimal form;
• usec — microseconds of time, in decimal form.

• <lev> — the level of importance of the message;
• <cat> — category of the message;
• <mess> — text of the message.

Text of the message and its category are coded to exclude separator symbols (space character).

Module of subsystem “Archives”<FSArch> 264

 1.2. Example of the archive of messages file

Example of the contents of an archive file in format of the XML language:

<?xml version='1.0' encoding='UTF-8' ?>
<FSArch Version="1.3.0" Begin="4a27dfbc" End="4a28c990">
<m tm="4a28cd01" tmu="942937" lv="4"

cat="/DemoStation/sub_DAQ/mod_DiamondBoards/">dscInit error.</m>
<m tm="4a28cd12" tmu="466631" lv="4"

cat="/DemoStation/sub_Transport/mod_Sockets/out_HDDTemp/">Connect to Internet
socket error: Operation now in progress!</m>

</FSArch>

Example of the contents of the archive file in the format of flat text:

FSArch 1.3.0 UTF-8 4a27dfbb 4a28cd12
4a28cd11:295857 1 /DemoStation/ Start!
4a28cd11:296091 1 /DemoStation/sub_Transport/ Start%20subsystem.
4a28cd11:304391 1 /DemoStation/sub_DAQ/mod_DAQGate/cntr_test/ Enable%20controller!
4a28cd11:306362 1 /DemoStation/sub_DAQ/mod_ModBus/cntr_testTCP/ Enable%20controller!
4a28cd11:310956 1 /DemoStation/sub_DAQ/mod_ModBus/cntr_testRTU/ Enable%20controller!
4a28cd11:313845 1 /DemoStation/sub_DAQ/mod_BlockCalc/cntr_Anast1to2node/ Enable

%20controller!
4a28cd11:531765 1 /DemoStation/sub_DAQ/mod_BlockCalc/cntr_KM102cntr/ Enable

%20controller!
4a28cd11:557546 1 /DemoStation/sub_DAQ/mod_BlockCalc/cntr_Anast1to2node_cntr/ Enable

%20controller!
4a28cd11:616320 1 /DemoStation/sub_DAQ/mod_BlockCalc/cntr_KM101/ Enable%20controller!
4a28cd11:770404 1 /DemoStation/sub_DAQ/mod_BlockCalc/cntr_KM102/ Enable%20controller!
4a28cd11:935745 1 /DemoStation/sub_DAQ/mod_BlockCalc/cntr_KM201/ Enable%20controller!
4a28cd12:64148 1 /DemoStation/sub_DAQ/mod_BlockCalc/cntr_КМ202/ Enable%20controller!

4a28cd12:212514 1 /DemoStation/sub_DAQ/mod_BlockCalc/cntr_KM301/ Enable
%20controller!

4a28cd12:331423 1 /DemoStation/sub_DAQ/mod_BlockCalc/cntr_KM302/ Enable%20controller!
4a28cd12:462627 1 /DemoStation/sub_DAQ/mod_System/cntr_AutoDA/ Enable%20controller!
4a28cd12:466631 4 /DemoStation/sub_Transport/mod_Sockets/out_HDDTemp/ Connect%20to

%20Internet%20socket%20error:%20Operation%20now%20in%20progress!
4a28cd12:499705 1 /DemoStation/sub_DAQ/mod_SoundCard/cntr_test/ Enable%20controller!
4a28cd12:502482 1 /DemoStation/sub_DAQ/mod_LogicLev/cntr_experiment/ Enable

%20controller!
4a28cd12:620560 1 /DemoStation/sub_DAQ/mod_JavaLikeCalc/cntr_testCalc/ Enable

%20controller!
4a28cd12:624907 1 /DemoStation/sub_DAQ/mod_Siemens/cntr_test/ Enable%20controller!
4a28cd12:644620 1 /DemoStation/sub_DAQ/mod_DAQGate/cntr_test/ Enable%20controller!
4a28cd12:665980 1 /DemoStation/sub_Archive/ Start%20subsystem.
4a28cd12:843813 1 /DemoStation/sub_DAQ/mod_BlockCalc/cntr_Anast1to2node/ Start

%20controller!
4a28cd12:845059 1 /DemoStation/sub_DAQ/mod_BlockCalc/cntr_KM102cntr/ Start

%20controller!
4a28cd12:845555 1 /DemoStation/sub_DAQ/mod_BlockCalc/cntr_Anast1to2node_cntr/ Start

%20controller!
4a28cd12:845983 1 /DemoStation/sub_DAQ/mod_BlockCalc/cntr_KM101/ Start%20controller!
4a28cd12:846778 1 /DemoStation/sub_DAQ/mod_BlockCalc/cntr_KM102/ Start%20controller!
4a28cd12:847440 1 /DemoStation/sub_DAQ/mod_BlockCalc/cntr_KM201/ Start%20controller!
4a28cd12:849979 1 /DemoStation/sub_DAQ/mod_BlockCalc/cntr_КМ202/ Start%20controller!
4a28cd12:850851 1 /DemoStation/sub_DAQ/mod_BlockCalc/cntr_KM301/ Start%20controller!
4a28cd12:851417 1 /DemoStation/sub_DAQ/mod_BlockCalc/cntr_KM302/ Start%20controller!
4a28cd12:852073 1 /DemoStation/sub_DAQ/mod_System/cntr_AutoDA/ Start%20controller!
4a28cd12:854718 1 /DemoStation/sub_DAQ/mod_LogicLev/cntr_experiment/ Start

%20controller!
4a28cd12:889380 1 /DemoStation/sub_Archive/ Start%20subsystem.
4a28cd12:909319 1 /DemoStation/sub_UI/mod_VCAEngine/ Start%20module.

Module of subsystem “Archives”<FSArch> 265

 2. Values Archiver
Archives of values are formed particularly by archivers of the values for each registered archive. There

cen be a lot of archivers with individual settings that allow to divide the archives by various parameters,
such as the accuracy and depth.

Archive of values is an independent component, which includes buffer processed by archivers. The main
parameter of archive of value is a source of data. As a source of data may make the attributes of the
parameters of subsystem “Data acquisition”, as well as other external data sources (passive mode). Other
sources of data could be: network archivers of remote OpenSCADA systems, environment of programming
of systems OpenSCADA etc. No less important parameters are the parameters of the archive buffer. From
the parameters of the buffer the opportunity of working of archivers depends on. Thus, the frequency of
values in the buffer should be no more than the frequency of the fastest archiver, a buffer size not less than
double the amount for the slowest archiver. Otherwise, the possible loss of data!

The overall scheme of archival of values vividly depicted in Fig. 2.

Fig.2. The overall scheme of process of archival values of module FSArch.

Files of archives are named by archivers based on the date of the first value in the archive and archive
identifier. For example in this way: <MemInfo_use 2006–06–17 17:32:56.val>.

Files of archives can be limited in time. After exceeding the limit the new file is created. Maximum
number of files in a directory of archiver also may be limited. After exceeding the limit on the number of
files old files will be deleted!

In order to optimize the use of disk space archivers support package of old archives by gzip packer.
Packaging is made after a long non-use of the archive. For fast archives connection allow to other systems
you can enable info-files using for packed files, that prevent all files forward unpackaging at other system.

Module of subsystem “Archives”<FSArch> 266

Module provides additional settings for the archiving process (Fig. 3).

Fig.3. Additional settings of an archiving process of values by module FSArch.

Those parameters include:
• Archive's file time size, by hours. — The parameter is set automatically when you change the
frequency values by archiver and generally proportional to the frequency values of the archiver.

 Large archive files will be processed long by long unpacking gzip-files and the primary
indexing, when accessing to parts of deep in the archives of history.

• Maximum files number for one archive. — Limits the maximum number of archive files and
share with the size of single file determines the size of archive on disk. Completely remove this
restriction can be set to zero.
• Maximum capacity by all archives, by megabytes. — Sets a limit on the maximum amount of
disk space occupied by all archive files by archiver. Testing is done by periodicity checking the
archives (below), which resulted in, on exceeding the limit, removes the oldest files of all archives.
Completely remove this restriction can be set to zero.
• Numeric values rounding (%). — Sets the percentage of boundary difference values of
parameters integer and real types where they are considered identical and will be archived as a
single value through sequential packaging. Allows well-packaged slightly changing parameters
which outside certainty. Disable this property can be set to zero.
• Pack files timeout, by minutes. — Sets the time after which, in the absence of appeals, archive
files will be packaged in gzip archiver. Set to zero for disable packing by gzip.

Module of subsystem “Archives”<FSArch> 267

• Check archives period, by minutes. — Sets the frequency of checking the archives for the
emergence or delete new files in a directory of archives, as well as exceeding the limits and
removing old archive files.
• Use info files for packed archives. — Specifies whether to create files with information about the
packed archive files by gzip-archiver. When copying files of archive on another station, these info
files can speed up the target station process of first run by eliminating the need to decompress by
gzip-archives in order to obtain information.
• Check archivator directory now. — The command, which allows you to immediately start
checking the archives, for example, after manual changes to the directory archiver.

 2.1. File format of archive values

To implement the archiving to the file system the following requirements are to be done:
• quick (easy) access to add to the archive and reading from the archive;
• the possibility of changing the values of the existing archive (to fill holes in duplicate systems);
• cycle (size restrictions);
• the possibility of the compression by the method of packaging the same values sequence that
preserves the possibility of quick access (consistent packaging);
• the possibility of packaging obsolete data by standard archivers (gzip, bzip2 ...), with the
possibility of extracting on access.

In accordance with the above requirements archiving is organized by method of plurality of files (for
each source). Cyclical of archive sold at the file level, ie a new file is created, and the oldest one is
removed. For fast compression the method of tightening to the last equal value is used. For this purpose, the
bit archiving table is provided with the size of one to one with the number of stored data. Ie each bit
corresponds to the single value in the archive. The presence of bit indicates the presence of value. For the
thread of the same values bits reduced to zero. In the case of the string archive the table is not a bit but the
byte one and contains the length of the appropriate value. In the case of reception of the thread of equal
values, the length will be zero and the first same value will be read. As the table is bite one, the archive will
be able to keep strings with the length more than 255 characters. Thus, the methods of storage can be
divided into a method of fixed and not fixed data size. The overall structure of the archive is shown in Fig.
4.

Fig. 4. The overall structure of the value archive.

When you create a new archive file there is formed: the title (the structure of the title is in the table 1),
zero bit table of package of the archive and the first false value. Thus, the archive will be initialized with
false values. In the future, the new values will be inserted in the area of values with adjustment of index

Module of subsystem “Archives”<FSArch> 268

table of packaging. It follows that the passive archives will dwindle in the files with the size of the title and
the bit table.

Table 1. The structure of the header of archive file
Field Description Size in bite(bit)

f_tp System name of the archive («OpenSCADA Val Arch.») 20
archive Name of the archive to which the file belongs. 20
beg Start time of the archive data (мкс) 8
end End time of the archive data (мкс) 8
period Periodicity of the archive (мкс) 8
vtp Type of value in the archive (Boolean, Integer, Real, String) (3)
hgrid Сriterion of using of hard grid in the buffer of the archive (1)

hres Сriterion of using of time of high resolution (mcs) in the buffer of the
archive

(1)

reserve Reserve 14
term The symbol of the end of the header of file (0x55) 1

Explaining of the mechanism of consistent packaging is given in Fig. 5. As can be seen from the figure a
sign of the package contains a length (not fixed types) or a sign of the package (fixed types) of the
separately taken value. This means that to obtain the desired value of displacement it is necessary to sum up
the length of previous valid values. The implementation of this operation each time and for each value is
highly invoice operation. Therefore, the mechanism of caching of displacement of the values is provided.
The mechanism caches displacement of values through predefined their quantity, as well as cashes the last
value for which the access is made (separately for reading and writing).

Fig. 5. The mechanism of follow packaging of values.

Changes of the values in the existing archive is also provided. However, given the necessity to
implement the shifting of the tail of the archive, it is recommended to perform this operation as sparingly as
possible and with as far as possible large blocks.

Module of subsystem “Archives”<FSArch> 269

 3. Efficiency
In the design and implementation of the module it was built mechanisms improving the process of

archiving.

The first mechanism is a mechanism of block (frame-accurate or transactive) location of data in the files
of the archives of values. Such an arrangement allows to achieve a maximum speed of archiving, and thus
allows to archive more data streams at the same time. The experience of the practical using showed that the
system of K8–3000 with a regular IDE hard drive is able to archive to 300000 data streams at a frequency
of 1 second, or K5–400 system with the IDE drive (2.5”) can archive to 100 parameters with 1 millisecond
intervals.

The second mechanism is the package of current values, and outdated files of archives to optimize the
use of disk space. There are two packaging mechanisms: the consistent package (archives of values), and a
mechanism of finish packaging of archives by means of standard packer (gzip). This approach allowed to
achieve high productivity in the process of archiving of current data with the effective mechanism of
consistent compression. And finish packaging by means of standard packer of obsolete archives completes
the overall picture of the compact storage of large volumes of data. Statistics of practical using, in real noise
signal (the worst situation), showed that the extent of consistent packaging is 10%, and the extent of the full
packaging was 71%.

Module of subsystem “Archives”<FSArch> 270

Module of subsystem “Archives” <DBArch>
Module: DBArch
Name: Arhivator on the DB
Type: Archive
Source: arh_DBArch.so
Version: 0.9.5
Author: Roman Savochenko

Description: Archive module. Provides archiving functions for messages and values on the
DB.

License: GPL

The module is designed for archiving messages and values of OpenSCADA to a database maintained by
OpenSCADA.

Any SCADA system provides the ability to archive the collected data, i.e. formation of history of the
changes (dynamics) of processes. Archives conditionally can be divided into two types: archives of
messages and archives of values.

A feature of the archives of messages is that so-called events are archived. The characteristic feature of
the events is its time of occurrence. The archives of messages are usually used for archiving, messages in
the system, i.e. conducting of logs and reports. Depending on the source the messages can be classified
according to different criteria. For example, this may be the reports of emergency situations, the reports of
actions of the operators, reports of the glitches of connection and others.

A feature of the archives of values is their frequency, measured in the time lag between two adjacent
values. Archives of values are used for archiving the history of continuous processes. As the process is
continuous, it can only be archived by introducing the notion of quantization of time interviewing, because
otherwise we get the archives of infinite dimensions in view of continuity of the nature of the process. In
addition, practically, we can get value from the time limited by the data sources. For example, a fairly high-
quality data sources in the industry, are rarely allowed to receive data at a frequency of more than 1kHz.
And this is without taking into account of the sensors themselves, which have even less qualitative
characteristics.

For conducting of archives in the system OpenSCADA the subsystem «Archives» is provided. This
subsystem, according to the types of archives, consists of two parts: an archives of messages and archives
of values. The subsystem, in general, is a module that allows you to create archives based on the different
nature and methods of storing of data. This module provides a mechanism for the archiving on the file
system for both: for the flow of messages, and for the flow of values.

 1. Message Archiver
Archives of messages are formed by archiver. There can be the set of archivers, with individual settings,

allowing to share archiving of different classes of messages.

The archiver of messages of this module stores data in a database table, which is named by the following
way: DBAMsg_{ArchID}. Where:

• ArchID — archiver identifier.

The size of the table of archive may be limited in time. After exceeding the limit the old records will be
deleted!

Module provides additional settings for the archiving process. This module has only one such parameter
and it etermines the size of the archive over time.

Table of the database archiver has the following structure: {TM, TMU, CATEG, MESS, LEV}. Where:

Module of subsystem “Archives” <DBArch> 271

• TM — UTC time of the message, seconds from (01.01.1970). In the DB, containing a specialized
type of storage date and time, can be used this specialized type.
• TMU — microseconds of time
• CATEG — message category.
• MESS — text of the message.
• LEV — level of the message.

 2. Values Archiver
Archives of values are formed particularly by archivers of the values for each registered archive. There

can be a lot of archivers with individual settings that allow to divide the archives by various parameters,
such as the accuracy and depth.

Archive of values is an independent component, which includes buffer processed by archivers. The main
parameter of archive of value is a source of data. As a source of data may make the attributes of the
parameters of subsystem “Data acquisition”, as well as other external data sources (passive mode). Other
sources of data could be: network archivers of remote OpenSCADA systems, environment of programming
of systems OpenSCADA etc. No less important parameters are the parameters of the archive buffer. From
the parameters of the buffer the opportunity of working of archivers depends on. Thus, the frequency of
values in the buffer should be no more than the frequency of the fastest archiver, a buffer size not less than
double the amount for the slowest archiver. Otherwise, the possible loss of data!

The overall scheme of archival of values vividly depicted in Fig. 1.

Fig.1. The overall scheme of the process of archiving by module DBArch.

Archive of this module stores data in a database table, which is called by the following way:
DBAVl_{ArchID}_{ArchiveID}. Where:

• ArchID — identifier of the archiver of values.
• ArchiveID — identifier of the archive.

The size of the table of archive may be limited in time. After exceeding the limit the old records will be
deleted!

Module provides additional settings for the archiving process. This module has only one such parameter
and it determines the size of the archive over time.

Module of subsystem “Archives” <DBArch> 272

Table of database archiver of values is as follows: {TM, TMU, VAL). Where:
• TM — UTC time of the value, the second from (01.01.1970). In the databases, containing a
specialized type of storage date and time, it can be used this type of specialization.
• TMU — Time value in microseconds.
• VAL — The value, type of value is determined by the type of the column.

 3. Informational table of the archival tables
To store the beginning, end and other information of archives in archival tables the informational table

with the name of the module is created: «DBArch". This table has the structure: {TBL, BEGIN, END,
PRM1, PRM2, PRM3). Where:

• TBL — Name of the table of the archive.
• BEGIN — Beginning of data in the archive.
• END — End of data in the archive.
• PRM1 — Optional parameter 1.
• PRM2 — Optional parameter 2.
• PRM3 — Optional parameter 3.

Module of subsystem “Archives” <DBArch> 273

Module of the subsystem “DB” <DBF>
Module: DBF
Nmae: DB DBF
Type: DB
Source: bd_DBF.so
Version: 2.0.2
Author: Savochenko Roman
Description: DB module. It provides the support of *.dbf files, version 3.0.
License: GPL

The module is designed to provide in the system OpenSCADA support of the type of database files
*.dbf. The module is based on the library for work with dbf files for “Complex2" firm “DIYA” Ltd. The
module allows you to perform operations on databases, tables and contents of tables.

 1. Operations over the database
The operations of opening and closing of the database is supported, with the possibility of creating a new

database when you open and delete existing at the close. In terms of the subsystem “DB” of system
OpenSCADA opening of DB is its registration for further using of it in the system.

Under the DB, in the case of the dbf-files it is meant the directory containing the dbf-files. Therefore,
operation of the creating and deleting of the database – creates and deletes the directory where the table
(dbf-files) are stored. The role of the address of database plays the full name of the directory with dbf-files.
Access to the database is defined by the system rights of access to the directory.

The module supports coding of data in the correct code page. To this purpose, for the database as a
whole, you can specify a working code page. During the work it will be carried out data coding, database
coding, from the DB code page to the system code page of OpenSCADA and backwards.

 2. Operations over the table
The operations of opening and closing of the table with the possibility of creating a new table when you

open and deleting the existing one at the closing are supported.

Actually dbf-file is the table. Creation and deletion of tables implies creation and deletion of dbf-file.
Table name is the name of dbf-file in the directory of DB. Access to the table are define by the rights of
access to dbf-file.

 3. Operations over the contents of the table
• Scanning of the records of the table;
• Request the values of these records;
• Setting the values of these records;
• Removing the records.

API of subsystem “DB” suppose the access to the contents of the table on the value of key(s) fields.
Thus, the operation of request of the record implies the preset of key columns of the object TConfig, which
will fulfill the request. Creating a new record(string) is the installation of the values of record, which does
not exist.

The module allows you to dynamically change the structure of the database tables DBF. Thus, in the
event of a discrepancy of the table and the structure determined by record, the structure of the table will be
reduced to the the required structure of record. In the case of the request of the value of the record, and

Module of the subsystem “DB” <DBF> 274

mismatching of the structures of record and the table there will be available only to the values of common
elements of the record and table. The module does not track the order of the elements in the record and in
the structure of the table!

While access to the values of the tables the synchronization is used by through the capture of the
resource to have access to the table. This avoids the destruction of data in the case of multi-access!

The types of the elements of dbf-file that correspond to types of elements of system OpenSCADA in the
following way:

The types of fields of system OpenSCADA Type of field of dbf-file
TFld::String “C”
TFld::Integer, TFld::Real “N”
TFld::Boolean “L”

 4. Productivity of DB
Measurement of productivity of DB were carried out by the test “DB” of the module of system tests

"SystemTests", by performing operations over the records of the structure: <name char (20), descr char
(50), val double (10.2), id int (7), stat bool>.

Operation K8-3000+,256M,120G Nokia N800, SD 2G
Creation of the 1000 records (sek): 1.07 37
Updating of the 1000 records (sek): 1.6 33.8
Getting of the 1000 records (sek): 1.0 34.32
Deleting of the 1000 record (sek): 0.95 37

Module of the subsystem “DB” <DBF> 275

Module of the subsystem “DB” <MySQL>
Module: MySQL
Name: DB MySQL
Type: DB
Source: bd_MySQL.so
Version: 1.7.1
Author: Savochenko Roman
Description: DB module. It provides the support for DB MySQL.
License: GPL

Module <MySQL> gives to the system OpenSCADA support of DB MySQL. MySQL database is a
powerful multi-platform database available for free license. Manufacturer of MySQL database is the
company MySQL AB http://www.mysql.com. The module is based on the library with API of the
manufacturer of DB MySQL. The module allows you to perform operations over databases, tables and
contents of tables.

 1. Operations over the database
The operations of opening and closing of the database is supported, with the possibility of creating a new

database when you open and delete existing at the close. In terms of the subsystem “DB” of system
OpenSCADA opening of DB is its registration for further using of it in the system. It also supported the
operation of requesting the list of tables in the database.

DB MySQL address by string of following type:
[<host>;<user>;<pass>;<bd>;<port>;<u_sock>;<names>;<tms>]. Where:

• host - the name of the host on which the database server MySQL works;
• user - the name of the user of database;
• pass - user password to access the database;
• bd - the name of the database;
• port - port to listen to by the database server (default is 3306);
• u_sock - the name of UNIX-socket in the case of local access to the database
(/var/lib/mysql/mysql.sock);
• names - MySQL SET NAMES charset;
• tms - MySQL timeouts in form [<connect>,<read>,<write>] and in seconds.

In the case of local access to the database in the same host, you must use the UNIX socket. For example:
[;roman; 123456;OpenSCADA;;/var/lib/mysql/mysql.sock;utf8;5,2,2]

In the case of remote access to the database you must use the host name and port of the server of the
database. For example: [server.nm.org;roman;123456;OpenSCADA;3306]

 2. Operations over the table
The operations of opening and closing of the table with the possibility of creating a new table when you

open and deleting the existing one at the closing, and also the operation of the requesting of the table's
structure are supported.

 3. Operations over the contents of the table
• scanning of the records of the table;
• request the values of these records;
• setting the values of these records;

Module of the subsystem “DB” <MySQL> 276

http://www.mysql.com/

• removing the records.

API of subsystem “DB” suppose the access to the contents of the table on the value of key(s) fields.
Thus, the operation of request of the record implies the preset of key columns of the object TConfig, which
will fulfill the request. Creating a new record(string) is the installation of the values of record, which does
not exist.

The module allows you to dynamically change the structure of the database tables MySQL. Thus, in the
event of a discrepancy of the table and the structure determined by record, the structure of the table will be
set to the required structure of record. In the case of the request of the value of the record, and mismatching
of the structures of record and the table there will be available only to the values of common elements of
the record and table. The module does not track the order of the elements in the record and in the structure
of the table!

The module is implement support multilanguage text variables. For fields with multilanguage text
variable create the column of separated language in format <lang>#<FldID> (en#NAME). In this time the
base column contain value for base language. The columns of separated languages created by needs, in time
saving to DB and execution OpenSCADA in correspond language. If for work language value no present
then will used value for base language.

The types of the elements of DB MySQL correspond to types of elements of system OpenSCADA in the
following way:

The types of fields of the
system OpenSCADA

Types of fields of DB MySQL

TFld::String char (n), text, mediumtext
TFld::Integer int (n), DATETIME [for fields with a flag TFld::DateTimeDec]
TFld::Real double(n, m)
TFld::Boolean tinyint(1)

 4. DB access
MySQL database provides a powerful mechanism for the separation of access, which is to selectively

identify the access for user of the database to specific SQL-commands. The following table lists the
operation over the database and the required access to the commands of these operations.

Operation SQL-commands
Creation of the database and tables CREATE
Deleting of the database and tables DROP
Adding of records INSERT
Deleting the values of records DELETE
Getting the values of records SELECT
Setting the values of records UPDATE
Manipulation with the structure of the table ALTER

Briefly we will look at the initial configuration of the MySQL server to connect for it using by this
module:

• Install MySQL DBMS server by the package or by build.
• Start DB server:
 $ service mysqld start
• Setup need password for system user "root":
 $ mysqladmin -u root password '123456'
• Connect to DB by the module help, enter DB address: "localhost;root;123456;test;;;utf8"

Module of the subsystem “DB” <MySQL> 277

 5. Productivity of DB
Measurement of productivity of DB were carried out by the test "DB" of the module of system tests

"SystemTests", by performing operations over the records of the structure: <name char (20), descr char
(50), val double (10.2), id int (7), stat bool>.

Operation
K8-3000+, 384M, 120G,
MySQL 5.0.51(local)

MySQL
4.0.24(remote)

Nokia N800, MySQL
5.0.89 (remote)

Creation of the 1000 records (sec.): 0.67 0.99 4.53
Updating of the 1000 records (sec.): 0.67 1.33 4.2
Getting of the 1000 records (sec.): 0.38 0.49 2.88
Deleting of the 1000 record (sec.): 0.23 0.34 1.47

Module of the subsystem “DB” <MySQL> 278

Module of the subsystem “DB” <SQLite>
Module: SQLite
Name: DB SQLite
Type: DB
Source: bd_SQLite.so
Version: 1.6.4
Aurhor: Savochenko Roman
Description: DB module. It provides the support for DB SQLite.
License: GPL

Module <SQLite> gives to the system OpenSCADA support of DB SQLite. DB SQLite is a small,
embedded database which supports the SQL-queries. SQLite DB is distributed under a free license. To
familiarize with the database it is possible on the website of the database – http://sqlite.org. The module is
based on the library with API of the manufacturer of DB SQLite. The module allows you to perform
operations over databases, tables and contents of tables.

 1. Operations over the database
The operations of opening and closing of the database is supported, with the possibility of creating a new

database when you open and delete existing at the close. In terms of the subsystem “DB” of system
OpenSCADA opening of DB is its registration for further using of it in the system. It also supported the
operation of requesting the list of tables in the database.

SQLite database is addressed by specifying the name of the database file in the following format:
[<FileDBPath>]. Where:

• FileDBPath - full path to DB file (./oscada/Main.db).
Use empty path for a private, temporary on-disk database create.
Use ":memory:" for a private, temporary in-memory database create.

The module supports coding of data in the correct code page. To this purpose, for the database as a
whole, you can specify a working code page. During the work it will be carried out data coding, database
coding, from the DB code page to the system code page of OpenSCADA and backwards.

 2. Operations over the table
The operations of opening and closing of the table with the possibility of creating a new table when you

open and deleting the existing one at the closing, and also the operation of the requesting of the table's
structure are supported.

 3. Operations over the contents of the table
• scanning of the records of the table;
• request the values of these records;
• setting the values of these records;
• removing the records.

API of subsystem “DB” suppose the access to the contents of the table on the value of key(s) fields.
Thus, the operation of request of the record implies the preset of key columns of the object TConfig, which
will fulfill the request. Creating a new record(string) is the installation of the values of record, which does
not exist.

The module allows you to dynamically change the structure of the database tables SQLite. Thus, in the
event of a discrepancy of the table and the structure determined by record, the structure of the table will be

Module of the subsystem “DB” <SQLite> 279

http://sqlite.org/

set to the required structure of record. In the case of the request of the value of the record, and mismatching
of the structures of record and the table there will be available only to the values of common elements of
the record and table. The module does not track the order of the elements in the record and in the structure
of the table!

The module is implement support multilanguage text variables. For fields with multilanguage text
variable create the column of separated language in format <lang>#<FldID> (en#NAME). In this time the
base column contain value for base language. The columns of separated languages created by needs, in time
saving to DB and execution OpenSCADA in correspond language. If for work language value no present
then will used value for base language.

The types of the elements of DB SQLite correspond to types of elements of system OpenSCADA in the
following way:

The types of fields of the system OpenSCADA Types of fields of database SQLite
TFld::String TEXT
TFld::Integer, TFld::Boolean INTEGER
TFld::Real DOUBLE

 4. Access rights
Access rights to the database are defined by the rights of access to the separately taken file of the

database. Module supports the work with SQLite database files in read-only mode, such as demonstrations.

 5. Productivity of DB
Measurement of productivity of DB were carried out by the test “DB” of the module of system tests

"SystemTests", by performing operations over the records of the structure: <name char (20), descr char
(50), val double (10.2), id int (7), stat bool>.

Operation K8-3000+, 256M, 120G, SQLite 3.4.2 Nokia N800, SD 2G
Creation of the 1000 records (sec.): 0.45 6.3
Updating of the 1000 records (sec.): 0.50 6.3
Getting of the 1000 records (sec.): 0.2 4.5
Deleting of the 1000 record (sec.): 0.2 2.5

Module of the subsystem “DB” <SQLite> 280

Module of the subsystem “DB” <FireBird>
Module: FireBird
Name: DB FireBird
Type: DB
Source: bd_FireBird.so
Version: 0.9.7
Author: Savochenko Roman
Description: DB module. It provides the support for DB FireBird.
License: GPL

Module <FireBird> gives the system OpenSCADA support of DB FireBird and InterBase. DB FireBird
is a small, embedded database, with the functions of a network database that supports SQL-queries. DB
FireBird is built on a commercial DBMS Interbase and distributed under a free license. To familiarize with
the database it is possible on the website of the database – http://www.firebirdsql.org. The module is based
on the library with API of the manufacturer of DB. The module allows you to perform operations over
databases, tables and contents of tables.

 1. Operations over the database
The operations of opening and closing of the database is supported, with the possibility of creating a new

database when you open and delete existing at the close. In terms of the subsystem “DB” of system
OpenSCADA opening of DB is its registration for further using of it in the system. It also supported the
operation of requesting the list of tables in the database.

DB FireBird is addressed by specifying the database file name, user name and password. In general, the
address database is written in this way: [<file>;<user>;<pass>]. Where:

• file – the full name of the database file;
• user – user of the database on behalf of which the access is made;
• pass – password for the user on behalf of which the access is made;

The module supports coding of data in the correct code page. To this purpose, for the database as a
whole, you can specify a working code page. During the work it will be carried out data coding, database
coding, from the DB code page to the system code page of OpenSCADA and backwards.

 2. Operations over the table
The operations of opening and closing of the table with the possibility of creating a new table when you

open and deleting the existing one at the closing, and also the operation of the requesting of the table's
structure are supported.

 3. Operations over the contents of the table
• scanning of the records of the table;
• request the values of these records;
• setting the values of these records;
• removing the records.

API of subsystem “DB” suppose the access to the contents of the table on the value of key(s) fields.
Thus, the operation of request of the record implies the preset of key columns of the object TConfig, which
will fulfill the request. Creating a new record(string) is the installation of the values of record, which does
not exist.

Module of the subsystem “DB” <FireBird> 281

http://www.firebirdsql.org/

The module allows you to dynamically change the structure of the database tables FireBird. Thus, in the
event of a discrepancy of the table and the structure determined by record, the structure of the table will be
set to the required structure of record. In the case of the request of the value of the record, and mismatching
of the structures of record and the table there will be available only to the values of common elements of
the record and table. The module does not track the order of the elements in the record and in the structure
of the table!

The module is implement support multilanguage text variables. For fields with multilanguage text
variable create the column of separated language in format <lang>#<FldID> (en#NAME). In this time the
base column contain value for base language. The columns of separated languages created by needs, in time
saving to DB and execution OpenSCADA in correspond language. If for work language value no present
then will used value for base language.

The types of the elements of DB FireBird correspond to types of elements of system OpenSCADA in the
following way:

The types of fields of the system OpenSCADA Types of fields of database FireBird
TFld::String VARCHAR, BLOB SUBTYPE TEXT
TFld::Integer INTEGER
TFld::Real DOUBLE
TFld::Boolean SMALLINT

 4. DB access
Access rights to the database are defined by the rights to DB file.

Briefly we will look at the initial configuration of the MySQL server to connect for it using by this
module:

• Install FireBird DBMS server by the package or by build.
• Start DB server:

Start classic server
$ service firebird start
Start by superserver processing
$ service xinetd restart

• Setup need pasword for system user "sysdba":
$ gsec -user sysdba -pass masterkey -mo sysdba -pw 123456

• Connect to DB by the module help, enter DB address: "/var/tmp/test.fbd;sysdba;123456"

 5. Productivity of DB
Measurement of productivity of DB were carried out by the test “DB” of the module of system tests

"SystemTests", by performing operations over the records of the structure: <name char (20), descr char
(50), val double (10.2), id int (7), stat bool>.

Operation K8–3000+, 256M, 120G, FireBird
2.0.3 (Local SuperServer)

FireBird 2.0.3 (Remote
SuperServer)

Creation of the 1000 records (sec.): 1.23 2.76
Updating of the 1000 records (sec.): 4.43 6.92
Getting of the 1000 records (sec.): 2.31 4
Deleting of the 1000 record (sec.): 1.01 2.39

Module of the subsystem “DB” <FireBird> 282

Module of the subsystem “DB” <PostgreSQL>
Module: PostgreSQL
Name: DB PostgreSQL
Type: DB
Source: bd_PostgreSQL.so
Version: 0.9.2
Author: Maxim Lysenko
Translated: Maxim Lysenko
Description: DB module. It provides the support for DB PostgreSQL.
License: GPL

Module <PostgreSQL> gives to the system OpenSCADA support of DB PostgreSQL. PostgreSQL
database is a powerful multi-platform database available for free license. Manufacturer of PostgreSQL
database is the PostgreSQL Global Development Group http://www.postgresql.org. The module is based on
the library with API of the manufacturer of DB PostgreSQL. The module allows you to perform operations
over databases, tables and contents of tables.

 1. Operations over the database
The operations of opening and closing of the database are supported, with the possibility of creating a

new database when you try to open one and delete the existing at the close. In terms of the subsystem "DB"
of system OpenSCADA opening of DB is its registration for further using of it in the system. It also
supported the operation of requesting the list of tables in the database.

DB PostgreSQL address by string of following type:
[<host>;<hostaddr>;<user>;<pass>;<bd>;<port>;<connect_timeout>]. Where:

• host - the name of host to connect to. If this begins with a slash, it specifies Unix-domain
communication rather than TCP/IP communication; the value is the name of the directory in which
the socket file is stored.
• hostaddr - Numeric IP address of host to connect to. This should be in the standard IPv4 address
format, e.g., 172.28.40.9. If your machine supports IPv6, you can also use those addresses. TCP/IP
communication is always used when a nonempty string is specified for this parameter.
• user - the name of the user of database;
• pass - user password to access the database;
• bd - the name of the database;
• port - port to listen to by the database server (default is 5432);
• connect_timeout - maximum wait for connection, in seconds. Zero or not specified means wait
indefinitely. It is not recommended to use a timeout of less than 2 seconds.

In the case of local access to the database in the same host the address string should be as follows:
[;;roman;123456;OpenSCADA;;10]

In the case of remote access to the database you must use the address and port of the server of the
database. For example: [server.nm.org;;roman;123456;OpenSCADA;;10]

 2. Operations over the table
The operations of opening and closing of the table with the possibility of creating a new table when you

open and deleting the existing one at the closing, and also the operation of the requesting of the table's
structure are supported.

Module of the subsystem “DB” <PostgreSQL> 283

http://www.postgresql.org/

 3. Operations over the contents of the table
• scanning of the records of the table;
• request the values of these records;
• setting the values of these records;
• removing the records.

API of subsystem “DB” suppose the access to the contents of the table on the value of key(s) fields.
Thus, the operation of request of the record implies the preset of key columns of the object TConfig, which
will fulfill the request. Creating a new record(string) is the installation of the values of record, which does
not exist.

The module allows you to dynamically change the structure of the PostgreSQL database tables. Thus, in
the event of a discrepancy of the table and the structure determined by record, the structure of the table will
be set to the required structure of record. In the case of the request of the value of the record, and
mismatching of the structures of record and the table there will be available only to the values of common
elements of the record and table. The module does not track the order of the elements in the record and in
the structure of the table!

The module provides the support of multilanguage text variables. For fields with multilanguage text
variables the columns of the appropriate language are created in format <lang>#<FldID> (en#NAME). In
this time the base column contain value for base language. The columns of other languages are created by
needs, at the time of saving to DB and execution OpenSCADA with appropriate language. In the case of the
value's absence for the language it will be used the values for basic language.

The types of the elements of DB PostgreSQL correspond to types of elements of system OpenSCADA in
the following way:

The types of fields of the
system OpenSCADA

Types of fields of DB PostgreSQL

TFld::String character(n), character varying(n), text

TFld::Integer integer, bigint, timestamp with time zone [for the fields with the flag
TFld::DateTimeDec]

TFld::Real double precision
TFld::Boolean smallint

 4. Access rights
PostgreSQL database contains some mechanism of separation of access, which is to specify the user

privileges for database. The table below lists the necessary privileges for the work in the OpenSCADA.

Operation SQL-commands
Creation of the DB CREATEDB
Creation of the connection LOGIN

Briefly we will look at the initial configuration of the PostgreSQL server to connect to it using this
module:

• Installing the PostgreSQL database server as a package or building.
• Primary server initialization:

DB initialization
$ service postgresql initdb
DB start
$ service postgresql start

• Lets allow trusted access from the local subnet or desired one by editing the file
/var/lib/pgsql/data/pg_hba.conf setting the 'trust':

local all all trust
host all all 127.0.0.1/32 trust

Module of the subsystem “DB” <PostgreSQL> 284

• Restart the server after you edit the access rights:
$ service postgresql restart

• Set the password for the system user 'postgres':
$ psql -U postgres -d template1 -c "ALTER USER postgres PASSWORD
'123456'"

• Connect to the database server by using this module by entering the database address:
"localhost;;postgres;123456;test"

 5. Productivity of DB
Measurement of productivity of DB were carried out by the test "DB" of the module of system tests

"SystemTests", by performing operations over the records of the structure: <name char (20), descr char
(50), val double (10.2), id int (7), stat bool>. OpenSCADA was launched with the demo configuration.

Operation
K8-3000+, 384M, 120G,
PostgreSQL 8.3 (local)

PostgreSQL
8.3 (remote)

Nokia N800,
PostgreSQL 8.3 (remote)

Creation of the 1000 records (sec.): 0.89 1.04 5
Updating of the 1000 records (sec.): 1.02 1.1 4.8
Getting of the 1000 records (sec.): 0.61 0.63 2.96
Deleting of the 1000 record (sec.): 0.36 0.4 1.73

Module of the subsystem “DB” <PostgreSQL> 285

The module of subsystem “Data acquisition”
<DiamondBoards>

Module: DiamondBoards
Name: Diamond cards of data acquisition
Type: DAQ
Source: daq_DiamondBoards.so
Version: 1.2.5
Author: Roman Savochenko
Translated: Maxim Lysenko

Description:
Provides an access to the cards of data acquisition from Diamond Systems. Includes
support for Athena motherboard.

License: GPL

The module provides for the system OpenSCADA support of dynamic data sources, based on the cards
for data collection of Diamond Systems company (http://diamondsystems.com/). The module is built on the
basis of the universal driver of the manufacturer of board. Universal driver is available for almost all known
software platforms in the form of a library. Universal driver has been received at
http://www.diamondsystems.com/support/software. The driver was included in the distribution kit of
OpenSCADA, therefore, for the building of the module external libraries are not required.

The boards of data acquisition of Diamond Systems represent the modules of expansion of the PC/104
format. Boards may include: analog IO (input/outputs), digital IO, and counters. Complete set of cards can
vary greatly. There can be contained only one type of IO or many others. In addition, the function of data
acquisition can be given to the system boards of this company. For example, the motherboard Athena
contains: 16 AI, 4 AO, 24 DIO.

The module provides support for analog and digital IO. The of analog inputs (AI) is supported in two
modes: direct acquisition and the acquisition on interruption. The method of the acquisition on interruption
allows to achieve the maximum frequency of interrogation which is supported by the hardware. In the case
of Athena, the frequency achieves 100 kHz. The process of acquisition on interruption data becomes the
second frames and placed in the archives buffer.

In the case of interrogation of the analog channels on interruption is not possible to configure
individually each channel. Such an opportunity is provided only through direct interrogation.

Discrete channels are usually bi-directional and grouped into 8 channels. Each group of channels can be
separately designate direction. The module provides the ability to configure a group of discrete parameters.

Also, the module implements the functions of the horizontal reservation, namely, working in conjunction
with the remote station of the same level.

 1. Data controller of Diamond boards
Board of Diamond Systems configured by creating the controller in the system OpenSCADA and

configuration of it. Example of the tab of configuration of the controller of the board is shown in Figure 1.

The module of subsystem “Data acquisition” <DiamondBoards> 286

http://www.diamondsystems.com/support/software
http://diamondsystems.com/

Fig.1. Tab of configuration of the controller/board of Diamond Systems.

Using this form, it can be set:
• The status of the controller(card), as follows: Status, "Enable", "Run" and the name of the
database containing the configuration.
• Identifier, name and description of the controller(card).
• The status, in which the controller is to be transfered at the boot time:"To enable" and "To start".
• Type of the card of Diamond Systems company.
• The names of tables for storing of the configuration of analog and discrete parameters of the
controller.
• The switching on of high-speed emulation mode of the data source.
• Base address and hardware interruption of the board(for the acquisition on interruption).
• Sign of the acquisition of analog inputs on the interruption and the frequency of data acquisition
on the same channel.
• The overall configuration of the converter of analog inputs on the following structure: the range
of input voltage, polarity and amplification of the channels.

In the mode of direct interrogation of analog inputs hardware interrupt of the card, frequency of analog
inputs interrogation and the strengthening of the analog converter are not available.

The module of subsystem “Data acquisition” <DiamondBoards> 287

To configure ports of digital inputs / outputs on the controller's page there is the tab of the configuration
(fig. 2).

Fig.2. Tab of configuration of digital inputs / outputs ports.

The module of subsystem “Data acquisition” <DiamondBoards> 288

 2. Parameters of the Diamond controller
Module provides the information on two types of parameters: the digital and analog. Each type of the

parameter is stored in the database and, consequently, has its own tab configuration. Tab of the
configuration of analog parameters is presented in Fig.3. Configuration tab of digital parameters is
presented in Fig.4.

Fig.3. Tab of the configuration of analog parameters.

Using the form of configuration of analog parameters it can be set:
• Mode of the parameter, namely "Enabled" and type of the parameter.
• Id, name and description of the parameter.
• The state in which the parameter is to be transfered at boot time: "To enable".
• The orientation of the parameter - "Input" or "Output".
• Physical channel of the parameter.
• Strengthening of the channel in the case of input(for direct interrogation).

To access the values of analog parameters are attributes must be formed. For analog inputs:
• the percentage value (value);
• input voltage (voltage);
• ADС code (code).

For analog outputs are set:
• the percentage value (value);
• output voltage (voltage).

The module of subsystem “Data acquisition” <DiamondBoards> 289

Fig.4. Configuration tab of digital parameters.

Using the Configuration tab of digital parameters there can be set:
• Mode of the parameter, namely, "Enable" and the type of parameter.
• Id, name and description of the parameter.
• The state in which the parameter is to be transfered at boot time: "To enabled".
• The orientation of the parameter - "Input" or "Output".
• Physical port and number of the channel.

To access the values of digital parameters the attribute, which provides the input value or inserts the new
one, must be formed.

Links
Used version the Linux driver from Diamond systems: dscud5.91linux.tar.gz

The patch for build driver at kernel Linux 2.6.29, used for data gathering by interrupt: lastkernels.patch

The module of subsystem “Data acquisition” <DiamondBoards> 290

http://wiki.oscada.org/Doc/DiamondBoards/files?get=lastkernels.patch
http://wiki.oscada.org/Doc/DiamondBoards/files?get=dscud5.91linux.tar.gz

The module of subsystem “Data acquisition”
<System>

Module: System
Name: Data acquisition of OS
Type: DAQ
Source: daq_System.so
Version: 1.7.5
Author: Roman Savochenko
Translated: Maxim Lysenko

Description:
Provides data acquisition from the OS. Supported data sources of OS Linux:
HDDTemp, LMSensors, Uptime, Memory, CPU etc.

License: GPL

The module is a sort of gateway between the system OpenSCADA and OS (operating system). The
module receives data from various data sources of the OS and allows to manage components of the OS (in
the future).

The module provides the ability to automatically search for the supported and active data sources with
the establishment of parameters for access to them as well as the implementation of the function of the
horizontal reservation, namely, working in conjunction with the remote station of the same level.

The module of subsystem “Data acquisition” <System> 291

 1. The controller of data
To add a data source of operating system there is created and configured the controller in the system

OpenSCADA. Example of the configuration tab of the controller of the given type depicted in Fig. 1.

Fig.1. Tab of configuration of the controller.

From this tab you can set:
• The state of the controller, as follows: Status, "Enable","Run" and the name of the database
containing the configuration.
• Id, name and description of the controller.
• The state in which the parameter is to be transfered at boot time: "To enable", "To start".
• Feature "Automatic search of active data sources and the creation of parameters for them".
• Name of table to store the configuration of the controller parameters.
• The acquisition schedule policy and the priority of the task of data acquisition.

The module of subsystem “Data acquisition” <System> 292

 2. Parameters
Module System provides only one type of parameters – “All parameters”. Additional configuration fields

of the parameters of the module (Fig. 2) are:
• part of the system;
• optional (depending on the data source).

Fig.2. Tab of configuration of the parameter.

The table below there is a list of supported data sources of the operating system, the value of the
additional configuration field and attributes of the parameters.

Data source
Value of the additional
configuration field Attributes of the parameter Demands

Processor unit
(CPU)

Name/number of the
process. It can be a
number of processor or to
be «in general» for all
processors <gen>.

• [real] load:Load (%)
• [real] sys:System (%)
• [real] user:User (%)
• [real] idle:Idle (%)

The module of subsystem “Data acquisition” <System> 293

Data source Value of the additional
configuration field

Attributes of the parameter Demands

Memory
(MEM)

Not used

• [dec] free:Free (кБ);
• [dec] total:Total (кБ);
• [dec] use:Used (кБ);
• [dec] buff:Buffers (кБ);
• [dec] cache:Cache (кБ);
• [dec] sw_free:Swap,

free (кБ);
• [dec] sw_total:Swap,

total (кБ);
• [dec] sw_use:Swap,

used (кБ).

Sensors
(sensors)

Not used

Attributes are defined by
sensors that are available on the
motherboard. For each sensor
the unique attribute is created.

The library libsensors or
program mbmon is used.
Higher priority in the use is
given to the library libsensors,
because mbmon has problems
on multicore architectures.

HDD
temperature
(hddtemp)

HDD. Disks, available in
the system.

• [string] disk:Name;
• [string] ed:Unit of

measurement;
• [real] t:Temperature.

It must be installed configured
and running as a service
program hddtemp

Uptime
(uptime)

Uptime:
• System;
• Station.

• [dec] full:Seconds full;
• [dec] sec:Seconds;
• [dec] min:Minutes;
• [dec] hour:Houres;
• [dec] day:Days.

HDD Smart
(hddsmart)

Disk. Disks, available in
the system.

Attributes are defined by
SMART-fields available for
this disc. For each field the
unique attribute is created.

It must be installed and
available smartctl utility.

HDD
statistics
(hddstat)

Disk or partition. Disks
or partitions, available in
the system.

Attributes:
• [dec] rd:Read (Кб);
• [dec] wr:Written (Кб).

Net statistics
(netstat)

Network interface.
Network interfaces,
available in the system.

Attributes:
• [dec] rcv:Recieved (Кб);
• [dec] trns:Transfered

(Кб).

The module of subsystem “Data acquisition” <System> 294

The module of subsystem “Data acquisition”
<BlockCalc>

Module: BlockCalc
Name: Block calculator.
Type: DAQ
Source: daq_BlockCalc.so
Version: 1.6.0
Author: Roman Savochenko
Translated: Maxim Lysenko
Description: Provides a block calculator.
License: GPL

The module of subsystems «DAQ» BlockCalc provides the system OpenSCADA with the mechanism
for creating custom calculations. The mechanism of calculations based on the formal language of block
circuits(functional blocks).

Also, the module implements the functions of the horizontal reservation, namely, working in conjunction
with the remote station of the same level. In addition to the synchronization of the archives of values and
archives of attributes of parameters the module implements synchronization of computational templates, in
order to shockless catch of the algorithms.

Languages of block programming based on the notion of circuits(functional blocks). Moreover,
depending on the substance of the block, block circuits may include: logic, relay logic circuits, a model of
technological process, and more. The essence of the block circuit is that it contains a list of blocks and
relations between them.

From a formal point of view a block is an element(function), which has inputs, outputs, and an algorithm
for computing. Basing on the concept of programming area, block is a frame of values associated with the
object of function.

Of course, the inputs and outputs of blocks may be needed to be connected for a solid block scheme. The
following types of links are provided:

• Interblock, connecting the input of one block to the output of another one, the input of one block
to another one's input and output of one block to the input of another one;
• Interblock remote, connection of blocks of controllers of different block circuits of the module;
• Coefficients, the transformation of input into the constant, all inputs / outputs by default are
initiated as a constant;
• External attribute of the parameter.

Conditionally, connections of blocks can be represented as links between the blocks as a whole(Fig. 1)
or detailing of the links(Fig. 2). In the process of binding parameters of blocks the connection of parameters
of any type is acceptable. Thus, in the process of computation automatically casting of types will be done.

The module of subsystem “Data acquisition” <BlockCalc> 295

Fig. 1. The general connection between the blocks of block scheme

Fig. 2. Detailed links between blocks

The module of subsystem “Data acquisition” <BlockCalc> 296

 1. The controller of the module
Each controller of this module contains the block circuit, which he computes with the specified period.

In order to provide calculated data in the system OpenSCADA the parameters can be created in the
controller. Example of the configuration tab of the controller of the given type depicted in Fig. 3.

Fig. 3. Tab configuration of the controller.

From this tab you can set:
• The state controller, as follows: State, “Enabled”, “Running” and the name of the database
containing the configuration.
• Id, name and description of the controller.
• The state, in which the controller is to be translated at boot time: “Enabled” and “Running”.
• The names of tables to store the parameters and blocks of the controller.
• The calc schedule policy, priority and number of iterations in one cycle of calculating task of the
block scheme of the controller.

The module of subsystem “Data acquisition” <BlockCalc> 297

 2.The block scheme of the controller
The block scheme is formed by means of the tab controller's blocks, configuration of the block (Figure

4) and its connections (Fig. 5).

Blocks of block scheme can connect both among themselves and to the attributes of the parameters.
Blocks themselves do not contain the structure of input/output(IO), but contain values, based on the IO-
structure of related function. Function for linking with a block is used from the object model of the system
OpenSCADA.

Any block may at any time be removed from the process and be reconfigured and then may be again
included in the process. Communications between the blocks can be configured without exception blocks
from the processing and stopping of the controller. All IO values without connections can be changed
during processing.

Using tab of the blocks you can:
• Add/remove a block in the block scheme.
• To monitor the total number, number of enabled and the number of processing blocks.

Fig. 4. Configuration tab of the block scheme.

Using the form of block configuration it can be set:
• The state of the block, as follows: “Enabled” and “Processed”.
• Id, name and description of the block.
• The state in which the block is to be translated at boot time: “Enabled” and “Running”.
• Set block which must calculate before this block.
• Appoint a working function from the object model. Back to the function for familiarization.

The module of subsystem “Data acquisition” <BlockCalc> 298

Fig. 5. Configuration tab of links of the block of the block scheme.

Using the configuration tab of links of the block of the block scheme the links can be set for the
parameter of each block separately.

The following types of links are supported:
• Inter-block. Connecting the block input to the output of another block, the input of one block to
another's input and output of one block to the input of another.
• Distant inter-block. The connection of blocks from various controllers of the module.
• Ratio. The transformation of the input to a constant. All inputs/outputs by default are initiated as
constants.
• External attribute of the parameter.

To set values for the parameter of the block there is the corresponding tab (Fig.6).

In accordance with the custom functions in the system OpenSCADA the four main types of IO are
supported: integer, float, boolean and string.

The module of subsystem “Data acquisition” <BlockCalc> 299

Fig. 6. Configuration tab of values of parameters of block of the block scheme.

The module of subsystem “Data acquisition” <BlockCalc> 300

 3. Parameters of the controller
The module provides only one type of parameters – the “Standard”. The parameter used to reflect the

data, calculated in the blocks, on the attributes of the controller's parameters. Example of the configuration
tab of the parameter is shown in Fig.7.

Fig. 7. Configuration tab of values of parameters of the controller.

From this tab you can set:
• The state of the parameter, as follows: “Enabled” and type of the parameter.
• Id, name and description of the parameter.
• The state in which the parameter must be translated at boot time: “Enabled”.
• The list of attributes that are reflected on the parameters of the blocks. It is created as the list of
elements in the format: <BLK>.<BLK_IO>:<AID>:<ANM>. Where:

• <BLK> - block ID, block schemes ID; for constant value set to:
'*s' - string type;
'*i' - integer type;
'*r' - real type;
'*b' - boolean type.

• <BLK_IO> - parameter of the block or of the the block scheme; for constant value set to
attribute value;
• <AID> — attribute of the parameter ID;
• <ANM> — name of the attribute of parameter.

The module of subsystem “Data acquisition” <BlockCalc> 301

 4. Copying of the block schemes
To simplify and expedite the development of complex and repetitive block schemes the mechanism of

copying of the elements of block scheme both individually and block schemes entirely is provided. The
mechanism of copying is integrated into the kernel of OpenSCADA and operates transparently.

The module of subsystem “Data acquisition” <BlockCalc> 302

The module of subsystem “Data acquisition”
<JavaLikeCalc>

Module: JavaLikeCalc
Name: Calculator based on Java-like language.
Type: DAQ
Source: daq_JavaLikeCalc.so
Version: 2.0.0
Author: Roman Savochenko
Translated: Maxim Lysenko

Description:
Provides based on java like language calculator and engine of libraries. The user can
create and modify functions and libraries.

License: GPL

The module of controller JavaLikeCalc provides a mechanism for creating of functions and libraries on
Java-like language. Description of functions on Java-like language is reduced to the binding parameters of
the function with algorithm. In addition, the module has the functions of the direct computation by creation
of the computing controllers.

Direct computations are provided by the creation of controller and linking it with the function of this
module. For linked function it is created the frame of values, with which the periodically calculating is
carried out.

The module implements the functions of the horizontal redundancy, namely, working in conjunction
with the remote station of the same level. In addition to the synchronization of the archives of values and
archives of attributes of parameters the module implements synchronization of computational function, in
order to shockless catch of the algorithms.

The module of subsystem “Data acquisition” <JavaLikeCalc> 303

Parameters of functions can be freely created, deleted or modified. The current version of the module
supports up to 65535 parameters of the function in the sum with the internal variables. View of the editor of
functions is shown in Figure 1.

Fig.1. View of the editor of functions.

The module of subsystem “Data acquisition” <JavaLikeCalc> 304

After any program changing or configuration of parameters recompiling of the programs with
forestalling of linked with function objects of values of TValCfg is performed. Language compiler is built
using well-known generator grammar «Bison», which is compatible with the not less well-known tool
Yacc.

The language uses the implicit definition of local variables, which is to define a new variable in the case
of assigning a value to it. This type of local variable is set according to the type of the assigning value. For
example, the expression <Qr=Q0*Pi+0.01;> will define Qr variable with the type of variable Q0.

In working with various types of data language uses the mechanism of casting the types in the places
where such casting is appropriate.

To comment the sections of code in the language it is provided «//» and «/ * ... * /» characters.
Everything that comes after "//" up to the end of the line and between «/ * ... * /», is ignored by the
compiler.

During the code generation language compiler produces an optimization of constants and casting the
types of the constants to the required type. Optimizing of the constants means the implementation of
computing of the constants in the process of building of the code under the two constants and paste the
result in the code. For example, the expression <y=pi*10;> reduces to a simple assignment <y=31.4159;>.
Casting the types of constants to the required type means formation of the constant in the code which
excludes the cast in the execution process. For example, the expression <y=x*10>, in the case of a real type
of the variable x, is transformed into <y=x*10.0>.

The language supports calls of the external and internal functions. Name of any function in general is
perceived as a character, test for ownership of which by a particular category is done in the following order:

• keywords;
• constants;
• built-in functions;
• external functions, object's functions and OpenSCADA nodes functions (DOM) ;
• already registered characters of variables, object's attributes and hierarchy of objects DOM;
• new attributes of the system parameters;
• new function parameters;
• new automatic variable.

Call of the external function, attribute of system parameters is written as an address to the object of
dynamic tree of the object model of the system OpenSCADA in the form of:
<DAQ.JavaLikeCalc.lib_techApp.klapNotLin>.

To provide the possibility of writing custom procedures for the administration of the various components
of OpenSCADA module provides the implementation of API pre-compilation of custom procedures of
individual components of OpenSCADA on the implementation of Java-like language. These components
are already: Templates of the parameters of subsystem “Data acquisition” and Visual control area (VCA).

The module of subsystem “Data acquisition” <JavaLikeCalc> 305

 1. Java-like language

 1.1. Elements of language

Keywords: if, else, while, for, break, continue, return, using, true, false.

Constants:
• decimal: numerals 0–9 (12, 111, 678);
• octal: numerals 0–7 (012, 011, 076);
• hexadecimal: numerals 0–9, letters a-f or A-F (0x12, 0XAB);
• real: 345.23, 2.1e5, 3.4E-5, 3e6;
• boolean: true, false;
• string: "hello", without next string went but with support of a direct concatenation of string
constants.

Types of variables:
• integer: -231...231, EVAL_INT(-2147483647);
• real: 3.4 * 10308, EVAL_REAL(-3.3E308);
• boolean: false, true, EVAL_BOOL(2);
• string: sequence of characters-bytes (0...255) any length, limited by memory capacity and DB
storage; EVAL_STR("<EVAL>").

Built-in constants: pi = 3.14159265, e = 2.71828182, EVAL_BOOL(2), EVAL_INT(-2147483647),
EVAL_REAL(-3.3E308), EVAL_STR("<EVAL>")

Attributes of the parameters of system OpenSCADA (starting from subsystem DAQ, as follows <Type of
DAQ module>.< Controller>.<Parameter>.<Attribute>).

The functions of the object model of the system OpenSCADA.

 1.2. Operations of language

Operations supported by the language presented in the table below. The priority of operations is reduced
from top to bottom. Operations with the same priority is composed of one color group.

Symbol Описание

() Call of the function.

{} Program blocks.

++ Increment (post and pre).

-- Decrement (post and pre).

- Unary minus.

! Logical negation.

~ Bitwise negation.

* Multiplication.

/ Division.

% The remainder of integer division.

+ Addition

- Subtraction

<< Bitwise shift left

>> Bitwise shift right

> Greater

>= Greater than or equal to

The module of subsystem “Data acquisition” <JavaLikeCalc> 306

Symbol Описание

< Less

<= Less than or equal to

== Equals

!= Unequal

| Bitwise «OR»

& Bitwise «AND»

^ Bitwise «Exclusive OR»

&& Boolean «AND»

|| Boolean «OR»

?: Conditional operation (i=(i<0)?0:i;)

= Assignment.

+= Assignment with addition.

-= Assignment with subtraction.

*= Assignment with multiplication.

/= Assignment with division.

 1.3. Embedded functions of language

Virtual machine of the language provides the following set of built-in functions general-purpose:
• double max(double x, double x1) — maximum value of x and x1;
• double min(double x, double x1) — minimum value of x and x1;
• string typeof(ElTp vl) — type of value vl.

To ensure a high speed in mathematical calculations module provides embedded mathematical functions
that are called at the level of commands of virtual machine. Predefined mathematical functions:

• double sin(double x) — sine x;
• double cos(double x) — cosine x;
• double tan(double x) — tangent x;
• double sinh(double x) — hyperbolic sine of x;
• double cosh(double x) — hyperbolic cosine of x;
• double tanh(double x) — hyperbolic tangent of x;
• double asin(double x) — arcsine of x;
• double acos(double x) — arc cosine of x;
• double atan(double x) — arctangent of x;
• double rand(double x) — random number from 0 to x;
• double lg(double x) — decimal logarithm of x;
• double ln(double x) — natural logarithm of x;
• double exp(double x) — exponent of x;
• double pow(double x, double x1) — erection of x to the power x1;
• double sqrt(double x) — the square root of x;
• double abs(double x) — absolute value of x;
• double sign(double x) — sign of x;
• double ceil(double x) — rounding the number x to a greater integer;
• double floor(double x) — rounding the number x to a smaller integer.

The module of subsystem “Data acquisition” <JavaLikeCalc> 307

 1.4. Operators of the language

The total list of operators of the language:
• var — operator for variable initialize;
• if — operator of the condition "If";
• else — operator of the condition "ELSE";
• while — description of the loop while;
• for — description of the loop for;
• in — for-cycle separator for object's properties scan;
• break — interrupt of the execution of the loop;
• continue — continue the execution of the loop from the beginning;
• using — allows to establish scope of functions of often used library (using Special.FLibSYS;) for
future reference only by means of the function name;
• return — interruption of the function and return of the result, the result is copied to the attribute
with the flag return (return 123;);
• new — object creation, realized object "Object", massif "Array" and regular expressions
"RegExp".

 1.4.1. Conditional operators

The language of module supports two types of conditions. First — this is the operation of condition for
use within the expression, the second — a global, based on the conditional operators.

Conditions inside the expression is based on the operations of «?» And «:». As an example we'll write
the following practical expression <st_open=(pos>=100)?true:false;>, which reads as «If the variable
<pos> greater than or equal to 100, the variable st_open is set to true, otherwise — to false.

The global condition is based on the conditional operators «if» and «else». An example is the same
expression, but written by other means <if(pos>100) st_open=true; else st_open=false;>. As shown, the
expression is written in a different way, but is read in the same way.

 1.4.2. Loops

Two types of loops are supported: while, for and for-in. The syntax of the loops corresponds to
programming languages: C++, Java, and JavaScript.

Loop while generally written as follows:
while(<condition>) <body of the loop>;

Loop for is written as follows:
for(<pre-initialization>;<condition>;<post-calculation>) <body of the loop>;

Loop for-in is written as follows:
for(<variable> in <object>) <body of the loop>;

Where:
<condition> — expression, determining the condition;
<body of the loop> — the body of the loop of multiple execution;
<pre-initialization> — expression of pre-initialization of variable of the loop;
<post-calculation> — expression of modification of parameters of the loop after the next iteration;
<variable> — variable, which will contain object's properties name at scan;
<object> — object for which properties scan gone.

 1.4.3. Special characters of string variables

The language supports the following special characters of string variables:
"\n" — line feed;
"\t" — tabulation symbol;
"\b" — culling;
"\f" — page feed;

The module of subsystem “Data acquisition” <JavaLikeCalc> 308

"\r" — carriage return;
"\\" — the character itself '\'.
"\041" — symbol '!' wrote by octal number;
"\x21" — symbol '!' wrote by hex number.

 1.5. Object

The language provides the data type "Object" support. The data type "Object" is associated container of
properties and functions. The properties can support data of fourth basic types and other objects. The access
to properties is doing through the dot to object <obj.prop> and also by property placement into the rectangle
brackets <obj["prop”]>.It is obvious that the first mechanism is static, while the second lets you to specify
the name of the property through a variable. Creating an object is carried by the keyword <new>: <varO =
new Object()>. The basic definition of the object does not contain functions. Copying of an object is
actually makes the reference to the original object. When you delete an object is carried out the reducing of
the reference count, and when a reference count is set to zero then object is removed physically.

Different components can define basic object with special properties and functions. The standard
extension of the object is an array "Array", which is created by the command <varO = new
Array(prm1,prm2,prm3,...,prmN)>. Comma-separated parameters are placed in the array in the original
order. If the parameter is the only one the array is initiated by the specified number of empty elements.
Peculiarity of the array is that it works with the properties as the indexes and their complete naming is
meaningless, and therefore the mechanism of addressing only by the placing the index into square brackets
<arr[1]> is accessible. Array stores the properties in its own container of the one-dimensional array. Digital
properties of the array are used to access directly to the array, and the characters work as object properties.
For more details about the properties and functions of the array can be read here.

The object of regular expression RegExp is created by command <varO = new RegExp(pat,flg)>, where
<pat> — pattern of regular expression, and <flg> — match flags. The object for work with regular
expressions, based on the library PCRE. In the global search set object attribute "lastIndex", which allows
you to continue searching for the next function call. In the case of an unsuccessful search for the attribute
"lastIndex" reset to zero. For more details about the properties and functions of the array can be read here.

For random access to the arguments of the functions provided the arguments object, which you can refer
to by the symbol "arguments". This object contains the property "length" with a number of arguments in
functions and allows you to access to a value of the argument by its number or ID. Consider the
enumeration of the arguments on the cycle:

args = new Array();
for(var i=0; i < arguments.length; i++)

arg[i] = arguments[i];

The basic types have the partial properties of the object. Properties and functions of the basic types are
listed below:

• NULL type, functions:
• bool isEVal(); — Return "true".

• Logical type, functions:
• bool isEVal(); — Check value to "EVAL".
• string toString(); — Performs the value as the string “true” or “false”.

• Integer and real number:
Properties:

• MAX_VALUE — maximum value;
• MIN_VALUE — minimum value;
• NaN — error value.

Functions:
• bool isEVal(); — Check value to "EVAL".

The module of subsystem “Data acquisition” <JavaLikeCalc> 309

http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual?v=ksv#h946-4
http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual?v=ksv#h946-3

• string toExponential(int numbs = -1); — Return the string of the number, formatted in
exponential notation, and with the number of significant digits <numbs>. If <numbs> is
missing the number of digits will have as much as needed.
• string toFixed(int numbs = 0, int len = 0, bool sign = false); — Return the string of the
number, formatted in the notation of fixed-point, and with the number of significant digits
after the decimal point <numbs> for minimum length <len> and strong sign present
<sign>. If <numbs> is missing the number of digits after the decimal point is equal to zero.
• string toPrecision(int prec = -1); — Return the string of the formatted number with the
number of significant digits <prec>.
• string toString(int base = 10, int len = -1, bool sign = false); — Return the string of the
formatted number of integer type with the following representation base (2-36) for minimum
length <len> and strong sign present <sign>.

• String:
Properties:

• int length — string length.

Functions:
• bool isEVal(); — Check value to "EVAL".
• string charAt(int symb); — Extracts from the string the symbol <symb>.
• int charCodeAt(int symb); — Extracts from the string the symbol code <symb>.
• string concat(string val1, string val2, ...); — Returns a new string formed by joining the
values <val1> etc. to the original one.
• int indexOf(string substr, int start); — Returns the position of the required string
<substr> in the original row from the position <start>. If the initial position is not specified
then the search starts from the beginning. If the search string is not found then -1 is returned.
• int lastIndexOf(string substr, int start); — Returns the position of the search string
<substr> in the original one beginning from the position of <start> when searching from the
end. If the initial position is not specified then the search begins from the end. If the search
string is not found then -1 is returned.
• int search(string pat, string flg = ""); — Search into the string by pattern <pat> and
pattern's flags <flg>. Return found substring position or -1 for else.

var rez = "Java123Script".search("script","i");
// rez = 7

• int search(RegExp pat); — Search into the string by RegExp pattern <pat>. Return
found substring position or -1 for else.

var rez = "Java123Script".search(new RegExp("script","i"));
// rez = 7

• Array match(string pat, string flg = ""); — Call match for the string by pattern <pat>
and flags <flg>. Return matched substring (0) and subexpressions (>0) array. Set "index"
attribute of the array to substring position. Set "input" attribute to source string.

var rez = "1 plus 2 plus 3".match("\\d+","g");
// rez = [1], [2], [3]

• Array match(TRegExp pat); — Call match for the string and RegExp pattern <pat>.
Return matched substring (0) and subexpressions (>0) array. Set "index" attribute of the
array to substring position. Set "input" attribute to source string.

var rez = "1 plus 2 plus 3".match(new RegExp("\\d+","g"));
// rez = [1], [2], [3]

• string slice(int beg, int end); string substring(int beg, int end); — Return the string
extracted from the original one starting from the <beg> position and ending be the <end>. If
the beginning or end is negative, then the count is conducted from the end of the line. If the
end is not specified, then the end is the end of the line.
• Array split(string sep, int limit); — Return the array of strings separated by <sep> with
the limit of the number of elements <limit>.
• Array split(RegExp pat, int limit); — Return the array of strings separated by RegExp
pattern <pat> with the limit of the number of elements <limit>.

Rez = "1,2, 3 , 4 ,5".split(new RegExp("\\s*,\\s*"));
// rez = [1], [2], [3], [4], [5]

The module of subsystem “Data acquisition” <JavaLikeCalc> 310

• string insert(int pos, string substr); — Insert substring <substr> into this string's position
<pos>.
• string replace(int pos, int n, string str); — Replace substring into position <pos> and
length <n> to string <str>.

rez = "Javascript".replace(4,3,"67");
// rez = "Java67ipt"

• string replace(string substr, string str); — Replace all substrings <substr> to string
<str>.

Rez = "123 321".replace("3","55");
// rez = "1255 5521"

• string replace(RegExp pat, string str); — Replace substrings by pattern <pat> to string
<str>.

rez = "value = \"123\"".replace(new
RegExp("\"([^\"]*)\"","g"),"``$1''"));
// rez = "value = ``123''"

• real toReal(); — Convert this string to real number.
• int toInt(int base = 0); — Convert this string to integer number in accordance with the
base <base> (from 2 to 36). If base is 0, then the prefix will be considered a record for
determining the base (123-decimal; 0123-octal; 0x123-hex).
• string parse(int pos, string sep = ".", int off = 0); — Get token with numbet <pos> from
the string when separated by <sep> and from offset <off>. Result offset is returned to back
<off>.
• string parsePath(int pos, int off = 0); — Get path token with numbet <pos> from the
string and from offset <off>. Result offset is returned to back <off>.
• string path2sep(string sep = "."); — Convert path into this string to separated by <sep>
string.

For access to system objects (nodes) of the OpenSCADA the corresponding object is provided which is
created simply by specifying the enter point "SYS" of the root object OpenSCADA, and then with the point
separator the sub-objects in accordance with the hierarchy are specified. For example, the call of the request
function over the outgoing transport is carried out as follows:
SYS.Transport.Sockets.out_testModBus.messIO(strEnc2Bin("15 01 00 00 00 06 01 03 00 00 00 05"));.

 1.6. Examples of programs on the language

Here are some examples of programs on Java-like language:

//Model of the course of the executive machinery of ball valve
if(!(st_close && !com) && !(st_open && com))
{

tmp_up=(pos>0&&pos<100)?0:(tmp_up>0&&lst_com==com)?tmp_up-1./frq:t_up;
pos+=(tmp_up>0)?0:(100.*(com?1.:-1.))/(t_full*frq);
pos=(pos>100)?100:(pos<0)?0:pos;
st_open=(pos>=100)?true:false;
st_close=(pos<=0)?true:false; lst_com=com;

}
//Valve model
Qr=Q0+Q0*Kpr*(Pi-1)+0.01;
Sr=(S_kl1*l_kl1+S_kl2*l_kl2)/100.;
Ftmp=(Pi>2.*Po)?Pi*pow(Q0*0.75/Ti,0.5):

(Po>2.*Pi)?Po*pow(Q0*0.75/To,0.5):
pow(abs(Q0*(pow(Pi,2)-pow(Po,2))/Ti),0.5);

Fi-=(Fi-7260.*Sr*sign(Pi-Po)*Ftmp)/(0.01*lo*frq);
Po+=0.27*(Fi-Fo)/(So*lo*Q0*frq);
Po=(Po<0)?0:(Po>100)?100:Po;
To+=(abs(Fi)*(Ti*pow(Po/Pi,0.02)-To)+

(Fwind+1)*(Twind-To)/Riz)/(Ct*So*lo*Qr*frq);

The module of subsystem “Data acquisition” <JavaLikeCalc> 311

 2. Controller and its configuration
The controller of the module connects with the functions of libraries, built with his help, to provide

immediate calculations. In order to provide calculated data in the system OpenSCADA parameters can be
created in the controller. Example of the configuration tab of the controller of the given type depicted in
Figure 2.

Fig.2. Configuration tab of the controller.

From this tab you can set:
• The state of the controller, as follows: Status, «Enable», «Run» and the name of the database
containing the configuration.
• Id, name and description of the controller.
• The state, in which the controller must be translated at boot: «To enable» and «To start».
• Name of table to store the settings.
• Address of the computational function.
• The calculation schedule policy, priority and number of iterations in one cycle of calculating task.

The module of subsystem “Data acquisition” <JavaLikeCalc> 312

Tab "Calculations" of the controller (Fig. 3) contains the parameters and the text of the program, directly
performed by the controller. Also for monitoring of execution the time of calculating of the program is
shown. Module provides a number of special options available in the controller program:

• f_frq — The controller program calculate frequency, read-only.
• f_start — First calculate of the controller program, start, read-only.
• f_stop — Last calculate of the controller program, stop, read-only.
• this — The controller object.

Fig.3. Tab “Calculations” of the controller.

 3. The parameter of the controller and its configuration
Parameter of the controller of the module executes the function of providing the access to the results of

computation of the controller to the system OpenSCADA by attributes if the parameters. Configuration tab
contains only one specific field of the, set the controller only contains a field of listing the parameters of
calculated function, which should be reflected.

The module of subsystem “Data acquisition” <JavaLikeCalc> 313

 4. Libraries of functions of module
The module provides a mechanism to create libraries of user functions on Java-like language. Example

of the configuration tab of the library is depicted in Figure 4. The tab contains the basic fields: status,
identifier, name and description, and also address of the table, in which the library is kept. In the
“Functions” tab of the library besides the list of functions the form of copying functions is contained.

Fig.4. Tab of the configuration of the library.

 5. User functions of the module
Function, as well as the library, contains the basic configuration tab, tab of the formation of the program

and the parameters of function (Fig. 1), as well as the performance tab of the created function.

 6. User programming API
Some objects of the module provides functions for user's programming.

The object "Functions library" (SYS.DAQ.JavaLikeCalc["lib_Lfunc"])
• ElTp {funcID}(ElTp prm1, ...) — call the library function {funcID}. Return result of the called
function.

The object "User function" (SYS.DAQ.JavaLikeCalc["lib_Lfunc"]["func"])
• ElTp call(ElTp prm1, ...) — call the function with parameters <prm{N}>. Return result of the
called function.

The module of subsystem “Data acquisition” <JavaLikeCalc> 314

The module of subsystem “Data acquisition”
<LogicLev>

Module: LogicLev
Name: Logic level
Type: DAQ
Source: daq_LogicLev.so
Version: 1.3.0
Author: Roman Savochenko
Translated: Maxim Lysenko
Description: Provides the logical level of parameters.
License: GPL

The module is a pure logic-level implementation mechanism, based on the templates of parameters of
the subsystem "Data acquisition — DAQ". The implementation of the module is based on the "Logical
level of the parameters of the system OpenSCADA". Practically, this module is an implementation of the
subsystem "Options" of the project without templates and putting it into the module.

The module provides a mechanism for the formation of the parameters of subsystem "DAQ", based on
other sources of the subsystem at the level of the user. Actually, the module uses templates of subsystem
"DAQ" and the specific format for the description of references to the attributes of the parameters of
subsystem "DAQ".

Also, the module implements the functions of the horizontal reservation, namely, working in conjunction
with the remote station of the same level. In addition to the synchronization of the archives of values and
archives of attributes of parameters the module implements synchronization of computational templates, in
order to shockless catch of the algorithms.

The module of subsystem “Data acquisition” <LogicLev> 315

http://wiki.oscada.org/Doc/LogParmUrov?v=su
http://wiki.oscada.org/Doc/LogParmUrov?v=su

 1. Data controller
For addition of the data source of parameters of the logical level the controller in the system

OpenSCADA is created and configured. Example of the configuration tab of the controller of the type is
depicted in Figure 1.

Fig.1. Сonfiguration tab of the controller.

From this tab you can set:
• The state of the controller, as follows: Status, «Enable», «Run» and the name of the database
containing the configuration.
• Id, name and description of the controller.
• The state, in which the controller must be translated at boot: «To enable» and «To start».
• Name of tables to store the settings based on templates and direct reflection external parameter of
DAQ.
• The schedule policy and the priority of the task of the interrogation of data sources.

 2. Parameters
The LogicLev module provides two types of parameters: "Logical"(std) and "Reflection

parameter"(pRefl). Additional configuration fields, the parameters of the module (Fig. 2) are:

The module of subsystem “Data acquisition” <LogicLev> 316

• "Logical"(std):
• Parameter template — template of DAQ parameter address.

• "Reflection parameter"(pRefl):
• Source parameter — source reflected parameter address.

Fig.2. Configuration tab of the parameter.

The module of subsystem “Data acquisition” <LogicLev> 317

Logical type parameter (std)
When building a template, for logical parameter type of the controller, the peculiarity of the link format

of the template must take into account. Reference should be written in the form: <Parameter>|
<identifier>, where:

<Parameter> — line, characterizing the parameter;
<Identifier> — id of the attribute of parameter.

This record allows to group multiple attributes of a source parameter and assign them only by the choice
of the parameter. Ie in the configuration dialog of the template (Fig. 3) it will be shown only parameter.
This does not preclude the possibility to assign the attributes of the parameter each separately, in addition, if
you miss in the configuration of the template the description of the links in the specified format, it will be
assigned an attribute of the parameter (Fig.4).

The module provides a special treatment of a number of attributes of the template:
• f_frq — Frequency computation procedure template, or the time after the last calculation, the
negative, in seconds, for scheduling of CRON, read-only.
• f_start — First calculate of template's procedure, start, read-only.
• f_stop — Last calculate of template's procedure, stop, read-only.
• f_err — The parameter error, full access. Value of the attribute is set to the parameter's error
attribute "err".
• SHIFR — The parameter code, read-only.
• NAME — The parameter name, read-only.
• DESCR — The parameter description, read-only.
• this — The parameter object, allow access to attributes of the parameter, for example to their
archives access.

Sign "(+)" at the end of the address signals about successful linking and presence of the target.

Fig.3. Configuration tab of the template of parameter.

The module of subsystem “Data acquisition” <LogicLev> 318

Fig.4. Configuration tab of the template of parameter. Show only attributes.

In accordance with the template underlying the parameter, we get the set of attributes of the parameter
Fig.5.

Fig.5. Tab of the attributes of the parameter.

The module of subsystem “Data acquisition” <LogicLev> 319

Parameter reflection (pRef)
All attributes from specified to reflect parameter just become available in this parameter thereby

realizing the function proxy, for example, for include the parameters from other sources into a single,
export, object controller (PLC).

The module of subsystem “Data acquisition” <LogicLev> 320

The module of subsystem “Data acquisition”
<SNMP>

Module: SNMP
Name: SNMP client
Type: DAQ
Source: daq_SNMP.so
Version: 0.7.0
Author: Roman Savochenko
Translated: Maxim Lysenko

Description:
Provides an implementation of the client of SNMP-
service.

License: GPL

SNMP protocol was designed to verify the operation of network routers and bridges in 1988.
Subsequently, the scope of the protocol coverage and other network devices such as hubs, gateways,
terminal servers, and even devices that are remotely related to the network: printer, uninterpretable power
supplies, PLC, etc. In addition, the protocol allows the possibility of changes in the functioning of these
devices. At this time, SNMP protocol is standardized as RFC-1157, -1215, -1187, -1089.

This module provides the ability to gather information and set modification for various devices on the
SNMP protocol. Also, the module implements the functions of the horizontal reservation, namely, working
in conjunction with the remote station of the same level.

The module of subsystem “Data acquisition” <SNMP> 321

 1. SNMP
The main interacting "individuals" of the protocols are the agents and management systems. If we

consider these two concepts in the language of «client - server», then the server role is played by agents,
that is the same devices for the survey of the state of which the protocol has been developed. Accordingly,
the role of the clients is played by the management systems - network applications which are necessary to
gather the information about the functioning of agents. In addition to these two entities in the model of the
protocol it can be identified as two more: control information and the protocol for data exchange.

All information about the objects of system-agent is contained in the so-called MIB (management
information base) - the base of control information, in other words, MIB is the totality of objects (MIB-
variables) accessible to the reading-writing operations.

For this time there are four typical of MIB:
1. Internet MIB — database of objects for providing the diagnosis of errors and configurations. It
includes 171 objects (including objects of MIB I).

2. LAN manager MIB — database of 90 objects - passwords, sessions, users, shared resources.
3. WINS MIB — database of objects required for the operation of a WINS server.
4. DHCP MIB — base of objects required for the operation of the DHCP server that serves for
dynamic allocation of IP addresses on the network.

In addition to the above types of databases, MIB can be additionally loaded by modules.

 1.1. MIB

All names of MIB have a hierarchical structure. There are ten root aliases:
1. System — the group of MIB II contains the seven objects, each of which serves to store
information about the system (OS version, time, etc.).

2. Interfaces — contains 23 objects necessary for the conduct of network interfaces of agents (the
number of interfaces, the size of MTU, the rate of transmission, physical addresses, etc.).

3. AT (3 objects) — are responsible for the broadcast address. No longer used. Was included in the
MIB I. In SNMP v2 this information was transferred to the MIB for the relevant protocols.

4. IP (42 objects) — data on the passing IP packets (number of requests, responses, offcast
packages).

5. ICMP (26 objects) — information about control messages (incoming/outgoing messages, errors,
etc.).

6. TCP (19) — all that relates to the same-name transport protocol (algorithms, constants,
connections, open ports, etc.).

7. UDP (6) — the same one for UDP protocol (incoming/outgoing datagram, ports, errors).
8. EGP (20) — data about the traffic Exterior Gateway Protocol (used by routers, object stores
information about the received/sent/ offcast frames).

9. Transmission — is reserved for specific MIB.
10. SNMP (29) — statistics on SNMP – incoming/outgoing packets, limiting package size, errors,
data on the process request, and much more.

 1.2. Addressing

Each of the root alias appears in the form of tree growing down. For example, to the address of the
administrator you can contact by the means of the way: system.sysContact.0, to the time of the system:
system.sysUpTime.0, to the description of the system (version, kernel and other information about the OS):
system.sysDescr.0. On the other hand, the same data can be specified in the point notation. So,
system.sysUpTime.0 value corresponds to 1.3.0, because the system has an index "1" in groups of MIB II,
and sysUpTime - 3 in the hierarchy of the group system. Zero at the end of the path indicates the scalar type
of data storage. During the work symbolic names of the objects are not used, that is, if the manager asks the
agent the contents of the parameter system.sysDescr.0, then in the query string the link to the object will be
converted to "1.1.0", and will not be handed over «as is».

The module of subsystem “Data acquisition” <SNMP> 322

In general, there are several ways to write the addresses of MIB-variable:
1. ".1.3.6.1.2.1.1" — Direct code addressing for object "System".
2. ".iso.org.dod.internet.mgmt.mib-2.system" — Full symbol to direct code addressing for object
"System".

3. "system.sysDescr.0" — Simple, not full path, addressing from root alias (object "System").
4. "SNMPv2-MIB::sysDescr.0" — Addressing from MIB base by module name for
"system.sysDescr.0".

 1.3. Interaction

In the SNMP client interacts with a server on a request-response principle. On its own, the agent is able
to initiate only one action, called a trap interrupt. In addition, all the actions of agents are to respond to
requests sent by managers.

There are 3 main versions of the protocol SNMP (v1 & v2 & v3), which are not compatible. SNMP v3
supports encryption of traffic, which, depending on implementation, uses the algorithms DES, MD5. This
leads to the fact that while transfer the most critical and important data is unavailable for listening. As a
transport protocol the UDP protocol is usually used in the SNMP. Although, in fact, SNMP supports a
variety of other lower-level transport protocols.

 1.4. Authorization

One of the key concepts of SNMP is the notion of group. Procedure of the authorization of the manager
is a simple test for membership of a particular group from the list, which belongs to the agent. If the agent
does not find a group of the manager in its list, their further interaction is impossible. By default, the group
used: public (for read) and private (for write). The protocol SNMP v3 for authentication uses the user with
password of authentication and password of privacy, depending on the level of security.

The module of subsystem “Data acquisition” <SNMP> 323

 2. Module
This module supports all versions of the protocol SNMP (1, 2 and 3) in the read-write MIB-parameters.

 2.1. Controller of data

For addition of the SNMP data source the controller is created and configured in the system
OpenSCADA. Example of the configuration tab of the controller is depicted in Figure 1.

Fig.1. Configuration tab of the controller.

From this tab you can set:
• The state of the controller, as follows: state, «Enable», «Run» and the name of the database
containing the configuration.
• Id, name and description of the controller.
• The state, in which the controller must be translated at boot: «To enable» and «To start».
• Name of table to store the configuration of the parameters of the controller.
• The acquisition schedule policy and the priority of the task of data acquisition.
• Remote agent's host address.
• Retries number for send request.

The module of subsystem “Data acquisition” <SNMP> 324

• Responds timeout, in seconds.
• Used SNMP version.
• Community or user for a connection establish.
• Restriction on the number of attributes in the one parameter.
• Security level for v3 (No auth/No privacy; Auth/No privacy; Auth/Privacy).
• The protocol (MD5, SHA) and password of authentication for v3.
• The protocol (DES, AES) and password of privacy for v3.

 2.2. Parameters

Module SNMP provides only one type of parameters — "Standard". An additional configuration field of
the parameter of the module(Fig. 2) is a list of MIB-parameters, the branches or separated items (scalars) of
which are to be read.

Fig.2. Configuration tab of the parameter.

The module of subsystem “Data acquisition” <SNMP> 325

In accordance with a specified list of MIB-parameters is carried out a survey of their branches (or
scalars) and the creation of the attributes of the parameter. Further, updating of the values of parameters is
carried out. Attributes are named in accordance with the code addressing of MIB-parameters, as the ID, and
the addressing from the base of MIB objects in the name of the attribute(Figure 3).

Fig.3. Tab of the attributes of the parameter.

The module of subsystem “Data acquisition” <SNMP> 326

TThe module of subsystem “Data acquisition”
<Siemens>

Module: Siemens
Name: Siemens DAQ
Type: DAQ
Source: daq_Siemens.so
Version: 1.4.0
Author: Roman Savochenko
Translated: Maxim Lysenko

Description:
Provides a data source PLC Siemens by means of Hilscher CIF cards, by using the
MPI protocol, and Libnodave library for the rest.

License: GPL

The primary aim of creating the module is to provide support for industrial controllers of firm Siemens
of series S7(S7-300, S7-400). Historically, access to the controllers of the firm in the Profibus network is
made only through its own communication processor (CP5412, CP5613, etc.) and the protocol S7. These
communications processors and API to the protocol S7 are rather expensive, in addition to the drivers for
the communication processors and S7 API are closed and are only available for the platform Intel +
Windows (I met the information on opportunities to buy for Linux).

As an alternative to communication processors of the company Siemens, which allows you to fully work
with the controllers of Siemens, is the range of communication products of fitm
Hilscher(http://hilscher.com), through the communications processors CIF of series PB(Profibus) and the
library Libnodave(http://libnodave.sourceforge.net).

Feature of Hilscher products is completely open specification of the protocol of exchange with the
communication processor, the unified driver for all cards CIF, the availability of drivers for many common
operating systems(OS) and openness of the driver for OS Linux(GPL).

The basis of the module is the driver of version 2.621 of Hilsher, kindly provided by Hilsher in the face
of Devid Tsaava for the 2.6 series kernels of OS Linux. Everything needed files to building are included
in the module and it is don't needed to satisfy any special dependencies. The driver version 2.621 for the
CIF cards is available for download cif2621.tgz.

The range of boards of CIF family of firm Hilsher and unified driver supports the widest range of
equipment. To lay support all these features in this module without having all the equipment on hand, it is
not possible. Therefore, the support of the equipment will be added on demand and availability of
equipment. As of version 1.1.0 module provides support for data sources on the network via Profibus or
MPI by means of MPI protocol at the network speed of 9600Bod to 12MBod. In particular, supported and it
is carried out check on the controllers of the Siemens company of family S7 (S7-300, S7-400).

Library Libnodave is an implementation of the MPI, S7, ISO-TSAP and others protocols by means of
revers-engineering, that are used in interaction with the controllers of Siemens. Library supports many MPI
and USB adapters, as well as ProfiNet. Communication processors firm Siemens, on platforms other than
Windows, the library doesn't support. At this stage, module support the protocol ISO-TSAP (ProfiNet)
through the library Libnodave. Library Libnodave fully incorporated in this module and does not require a
special permit of any dependencies during building and in the performance.

Also, the module implements the functions of the horizontal reservation, namely, working in conjunction
with the remote station of the same level. In addition to the synchronization of the archives of values and
archives of attributes of parameters the module implements synchronization of computational templates, in
order to shockless catch of the algorithms.

TThe module of subsystem “Data acquisition” <Siemens> 327

http://wiki.oscada.org/Doc/Siemens/files?get=cif2621.tgz
mailto:DTsaava@hilscher.com
http://libnodave.sourceforge.net/
http://hilscher.com/
mailto:DTsaava@hilscher.com
http://wiki.oscada.org/Doc/Siemens/files?get=cif2621.tgz

 1. Communication controllers CIF
CIF family card driver supports the ability to install up to 4 CIF boards. In order to control the

availability of cards in the system and their possible configurations, the module provides a form of control
and configuration of the CIF-cards (Fig. 1).

Fig.1. Configuration tab of CIF-boards.

TThe module of subsystem “Data acquisition” <Siemens> 328

Use this form you can verify the existence of communication processors and their configuration, and
configure the network settings of PB Profibus in the form of addresses of communication processor and
speeds of bus Profibus. In the other tab of the module (Fig.2) you can verify the presence of various stations
in the network Profibus.

Fig.2. Monitoring tab of Profibus network.

TThe module of subsystem “Data acquisition” <Siemens> 329

 2. The controller of the data source
To add a data source it is created and configured the controller in the system OpenSCADA. Example of

the configuration tab of the controller of this type is depicted in Figure 3.

Fig.3. Configuration tab of the controller.

Using this tab you can set:
• The state of the controller, as follows: State, «Enable», «Run» and the name of the database
containing the configuration.
• Id, name and description of the controller.
• The state, in which the controller must be translated at boot: «To enable» and «To start».
• Name of table to store the configuration of the parameters of the controller.
• The acquisition schedule policy and the priority of the task of data acquisition.
• The mode of the asynchronous recording in the remote controllers.
• Connection type. Supported:

• CIF_PB — connection to controllers series S7, by firm Siemens, by communication unit
CIF-50PB or like;
• ISO_TCP, ISO_TCP243 — connection to controllers series S7, by firm Siemens, by
Ethernet network (TCP243 by CP243);

TThe module of subsystem “Data acquisition” <Siemens> 330

• ADS — TwinCAT ADS/AMS protocol for connection to controllers firm Beckhoff.
• Remote controller address. For connections:

• CIF_PB — controller address in "Profibus" network, digit 0-255;
• ISO_TCP, ISO_TCP243 — IP-address into Ethernet network;
• ADS — Network identifier and port for target and source stations, in view
"{Target_AMSNetId}:{Target_AMSPort}|{Source_AMSNetId}:{Source_AMSPort}"
(for example: "192.168.0.1.1.1:801|82.207.88.73.1.1:801"), where:

• AMSNetId — network identifier, write into view of six digits 0-255, for example:
"192.168.0.1.1.1";
• AMSPort — port, write into view digit 0-65535.

• Slot CPU in which the central processor of the controller is placed.
• CIF card used for access to the industrial controller through CIF communication processors.
• Output transport OpenSCADA, used by protocol "ADS" for requests transmission.

TThe module of subsystem “Data acquisition” <Siemens> 331

 3. The parameters of the data source
Given the high intellectuality of data sources in the face of industrial controllers of Siemens S7-300 and

S7-400, the options are executed on the basis of templates. This approach allows us to go beyond a rigid list
of types of parameters, which limits the possibilities of the controllers, and provide users with the ability to
build the necessary types of parameters independently or use the library of already been developed types of
parameters (templates).

Accordingly, the module provides only one type of parameters — "Logical". Additional configuration
fields of the parameters of the module(Figure 4) is the field of selection of template of the parameter.

Fig.4. Configuration tab of the parameter.

To configure a template of parameter it is made the appropriate tab. The contents of this tab is defined by
the configuration of the template that is the corresponding link fields and fields of setting the constants are
formed.

Types of links depend on the type of parameter in the template (boolean, integer, real and string) and the
definition of link value(for the group of links). Definition of the group link in the template is written in the
format: "<Name of the link>|<The offset in the database>|<The size of the value>", where:

• <Name of the link> — Name of the group link. All links with the same name are grouped and
shown as a link to the database or database with the specified offset.

• <The offset in the database> — Name of the offset in the data block (DB). If the only database in
the configuration of the template is specified the offset will be specified for the parameter, but if in
the configuration of the template the offset will be specified too, the both offsets are summarized

TThe module of subsystem “Data acquisition” <Siemens> 332

http://wiki.oscada.org/Doc/LogParmUrov?v=su

together. This approach allows to access a variety of structures in the single data block. DB number
and offset you can set into decimal (3245) and hexadecimal views (0xCAD).

• <The size of the value> — Optional field that specifies a custom size of the value in the controller.
The following sizes of types of values are provided:

• Integer: — 1 byte(signed), 2 byte(signed by default) and 4 byte(signed).
• Real: — 4 byte(float by default), 8 byte(double).
• Boolean: — always one byte (with a bit through the point - DB1.10.1).
• String: — 10 byte(by default) and 1-200 can be set.

An illustrative example of the overall process of the configuration of parameter form the template and to
the values is shown in Figures from 5 to 8.

Fig.5. Example of the template with grouping.

TThe module of subsystem “Data acquisition” <Siemens> 333

Fig.6. Configuration tab of the template of parameter

Fig.7. Configuration tab of template of the parameter with an indication of the parameters separately.

TThe module of subsystem “Data acquisition” <Siemens> 334

Fig.8. The values of the parameter.

Module supports only the data blocks(DB) of the controllers addressing!

The module provides a special treatment of a number of attributes of the template:
• f_frq — Frequency computation procedure template, or the time after the last calculation, the
negative, in seconds, for scheduling of CRON, read-only.
• f_start — First calculate of template's procedure, start, read-only.
• f_stop — Last calculate of template's procedure, stop, read-only.
• f_err — The parameter error, full access. Value of the attribute is set to the parameter's error
attribute "err".
• SHIFR — The parameter code, read-only.
• NAME — The parameter name, read-only.
• DESCR — The parameter description, read-only.
• this — The parameter object, allow access to attributes of the parameter, for example to their
archives access.

TThe module of subsystem “Data acquisition” <Siemens> 335

 4. Asynchronous recording mode
The standard recording mode for SCADA-systems interacting with the PLC, is the synchronous, because

it allows to control the correctness of the conclusion of the record operation. However, in cases of recording
multiple parameters at once and often, this approach is not justified in view of sending a multitude of small
requests to the controller that overrides the PLC and has a large time interval. The solution is asynchronous
recording of an adjacent values by means of the single block. This is supported by this module and allows
you to record all parameters immediately by the adjacent blocks of 240 byte. Read and write in this mode is
performed by the adjacent blocks with the periodicity of survey of the controller.

 5. Comments
After a targeted search was found a few solutions of the problem of communication with industrial

controllers of firm Siemens through various communication interfaces:
• Found a lot of solutions from the company Siemens, which supplied with solutions that support
an open operating system "Linux"
(http://www.automation.siemens.com/net/html_76/produkte/040_cp_1616.htm, ...).

Links
Firm's Hilscher driver for boards family CIF: cif2621.tgz

The patch for build driver for kernel Linux 2.6.29: lastkernels.patch

TThe module of subsystem “Data acquisition” <Siemens> 336

http://wiki.oscada.org/Doc/Siemens/files?get=lastkernels.patch
http://wiki.oscada.org/Doc/Siemens/files?get=cif2621.tgz
http://www.automation.siemens.com/net/html_76/produkte/040_cp_1616.htm

The modules <ModBus> of subsystem “Data
acquisition” and subsystem “Transport protocols”
Parameter Module 1 Module 2

ID: ModBus

Name: ModBus

Type: DAQ Protocol

Source: daq_ModBus.so

Version: 1.3.0 0.6.4

Author: Roman Savochenko

Translated: Maxim Lysenko

Description:
Provides implementation of client service of the
protocol ModBus. Modbus/TCP, Modbus/RTU
and Modbus/ASCII protocols are supported.

Provides implementation of protocols
ModBus. Modbus/TCP, Modbus/RTU and
Modbus/ASCII protocols are supported.

License: GPL

ModBus — communication protocol based on the client-server architecture. It was developed by
Modicon for using in the programmable logic controllers (PLC). It became the de facto standard in the
industry and is widely used for the connection of industrial electronic equipment. Used to transfer data via
serial line RS-485, RS-422, RS-232, and network TCP/IP. Currently supported non-profit organization
ModBus-IDA.

There are three modes of the protocol: ModBus/RTU, ModBus/ASCII and ModBus/TCP. The first two
use the serial communication lines (mostly RS-485, less RS-422/RS-232), the last uses TCP/IP network to
transfer data.

Module of the data acquisition provides an opportunity to gather the information from various devices by
means of the protocol ModBus in all modes. Also, the module implements the functions of the horizontal
reservation, namely, working in conjunction with the remote station of the same level. At the same time, the
module of the protocol allows you to create and issue data by means of the protocol ModBus in various
modes, and through interfaces that are supported by modules of subsystem "Transports".

The modules <ModBus> of subsystem “Data acquisition” and subsystem “Transport protocols” 337

 1. General description of the ModBus protocol
Protocol ModBus/RTU requires one lead(requesting) device in the line(master), which can send

commands to one or more driven devices(slave), referring to them by a unique in the line address. Syntax of
the commands of the protocol allows to address 247 devices on the one connection line of standard RS-
485(less RS-422 or RS-232). In the case of TCP addressing mode is excluded from the protocol, as it is
implemented in the TCP/IP stack.

Initiative of exchange always comes from the leading device. Slave devices listen the line. Master
request (package, the sequence of bytes) in the line and turns into a listening line. Slave device responds to
the request, which came to him.

The end of sending the response is determined by the mode. In RTU mode, the end of massage is
determined by time interval between end of receive the previous byte and start receiving following, the time
symbol. If this interval exceeds the time required to receiving one and a half bytes on a given rate of
transmission then receiving a frame response is considered complete. In ASCII mode, the criterion of end
of the massage is the character '\r', and in the mode of TCP — the expected size of the massage, information
about which present in the packet header.

 1.1. Addressing

All data operations are tied to zero, each type of data (register, bit, register of input or bit of input)
addresses begin with 0000 and ends 65535.

 1.2. Standard codes of functions

In ModBus protocol it can be divided into several subsets of commands(Table 1).

Table 1: The subset of commands of ModBus protocol
Subset Range of codes

Standard 1–21
Reserve for advanced features 22–64
Custom 65–119
Reserve for own needs 120–255

By data acquisition module used commands 0x03 and 0x06(0x10) for read and write registers, 0x01 and
0x05(0x0F) for read and write bits, 0x02 and 0x04 for read bit and register of input accordingly.

Module of the protocol process the requests by the commands 0x03 and 0x06(0x10) for reading and
writing registers, 0x01 and 0x05(0x0F) for reading and writing bits.

The modules <ModBus> of subsystem “Data acquisition” and subsystem “Transport protocols” 338

 2. Module of the implementation of the protocol
ModBus protocol module contains the code implementing of the protocol part of ModBus, namely

particular variants of protocols ModBus/TCP, ModBus/RTU and ModBus/ASCII. Module of the protocol
in conjunction with the selected transport is actively used by the data acquisition module for direct queries
implementation. Because of the module of the protocol is independent, by using of it you can create
additional modules for data acquisition by non-standard functions of the expansion of ModBus of various
automation equipment.

 2.1. API functions of outgoing requests

API functions for outgoing queries operate with the exchange of blocks PDU, XML-wrapped in
packages with the following structure:

<prt id="sId" reqTm="reqTm" node="node" reqTry="reqTry">[pdu]</prt>

Where:
• prt — name of the tag with the name of the used variant of the protocol (TCP, RTU or ASCII).
• sId — identifier of the source of the query. Used for placing to the protocol the output protocol.
• reqTm — time of the request, namely the time during which the answer is expected, in
milliseconds.
• node — number of the destination node or the identifier of the unit ModBus/TCP.
• reqTry — number of attempts of repeating the request with the error in the answer. Only for
ModBus/RTU and ModBus/ASCII.
• pdu — directly block of the unit of the protocol data (PDU) ModBus.

The resulting pdu replaces the request pdu in the XML-package, and set the attribute "err" with the code
and text of the errors, if it is took place.

The modules <ModBus> of subsystem “Data acquisition” and subsystem “Transport protocols” 339

 2.2. Servicing of the requests for ModBus protocol

Input part of servicing of the requests to the module of the protocol realizes verification and processing
of the requests through objects of the nodes, provided by the module(Fig. 1). Actually, the mechanism is
implemented, that allow the system OpenSCADA to perform the role of the ModBus/TCP server or the
slave device of ModBus/RTU and ModBus/ASCII. Thus the system OpenSCADA gets an opportunity to
serve the role of any participant of the ModBus networks.

Fig.1. Tab of the list of the nodes of servicing incoming requests of the protocol.

The node of the protocol is equivalent to the physical node of the device of ModBus network. Node of
the protocol can operate in three modes:

• "Data" — mode of the reflection of data of OpenSCADA on arrays of registers and bits of
ModBus to transfer them at the request of the client node or master.
• "Gateway of the node" — mode of the redirecting of the requests to the node of the another
ModBus network through this node.
• "Gateway of the network" — mode of the redirecting of the requests to any node in another
ModBus network, actually carrying out the integration of several ModBus networks into one.

Since the protocol nodes can be created a great number, it turns out that on the one interface, ie in the
one network, one station on the basis of OpenSCADA can clear provide multiple nodes of ModBus network
with different data.

Lets consider particular configuration of the node of the protocol in various modes.

The modules <ModBus> of subsystem “Data acquisition” and subsystem “Transport protocols” 340

The mode of the node of the protocol “Data”

Mode is used to reflect the data of OpenSCADA on arrays of registers and bits of ModBus. The overall
configuration of the node is made in the tab “Node”(Fig. 2) by the parameters:

• The state of the node, as follows: «Enable» and the name of the database containing the
configuration.
• Id, name and description of the node.
• The state, in which the node must be translated at boot: «To enable».
• Address of the node in the ModBus network from 1 to 247.
• Inbound traffic, to the network of which the node is belonged to. It is selected from the list of
input transport of the subsystem “Transports” of OpenSCADA. Specifying as the transport the
symbol "*" makes this node a participant of any ModBus network with the processing of requests
from any transport.
• Variant of the ModBus protocol, requests in which must be processed by the node from the list:
All, RTU, ASCII, TCP/IP.
• The choice of the mode, in this case the mode “Data”.
• Period of calculation of data in seconds. Specifies the frequency of processing of forming for the
requests data, namely, data tables of ModBus, calculation of data programs and servicing of links to
the data of OpenSCADA.

Node in this mode process the following standars commands of the ModBus protocol:
• 0x01 — reading of the group of bits;
• 0x03 — reading of the group of registers;
• 0x05 — settig of the single bit;
• 0x06 — settig of the single register;
• 0x0F — settig of the group of bits;
• 0x10 — settig of the group of registers.

The modules <ModBus> of subsystem “Data acquisition” and subsystem “Transport protocols” 341

Fig.2. The tab “Node” of the configuration page of the node of the protocol in the “Data” mode.

To form the table of the reflection of the data of ModBus network, namely, registers and bits the tab
"Data" is provided(Fig.3). The tab "Data" contains a table of parameters and program for processing of the
parameters with the specified programming language, which is available in the system OpenSCADA. Table
contains the parameters with the properties:

• Id — ID of the parameter. It is the key for the formation of the tables of registers and bits of
ModBus. To specify that this parameter is the register of the ModBus, identifier must be written as
"R[N]w", where N — number of the register's number from 0 to 65535, and w — optional character
indicating the possibility of setting of it by the ModBus request eg: R23, R456, R239w. For the
ModBus bit specifying, ID must be written as "C[N]w", where N — number of bits from 0 to 65535,
and w — optional character indicating the possibility of setting of it by the ModBus request, eg:
C437, C0, C39w. All other parameters are internal and are used for a variety of intermediate
calculations, processing and conversion.
• Name — The name of the parameter is used for the naming of the connection.
• Type — Type of the parameter from the list: "Real", "Integer", "Boolean" and "String". For the
registers and bits of ModBus it makes sense to set "Integer" and "Boolean" type, respectively.
• Connection — Sign that this option should be to connect with the attribute of the parameter of
subsystem "Data acquisition". These connections are set in the "Connection" tab.
• Value — The original or current, if the node is switched on, the value of the parameter.

The table by default identifies several parameters of special significance:
• f_frq — frequency of computing the table by the program;
• f_start — sign of the first computing, the start up of the program.
• f_stop — sign of the last execution, the stop of the program.

The modules <ModBus> of subsystem “Data acquisition” and subsystem “Transport protocols” 342

Fig.3. The tab “Data” of the configuration page of the node of the protocol in the “Data” mode.

The modules <ModBus> of subsystem “Data acquisition” and subsystem “Transport protocols” 343

For the parameter which are signed as links above it can be set the links only to switched off node of the
protocol in the tab “Connections”(Figure 4).

 Fig.4.
The tab “Links” of the configuration page of the node of the protocol in the “Data” mode.

The modules <ModBus> of subsystem “Data acquisition” and subsystem “Transport protocols” 344

The mode of the node of the protocol “Gateway of the node”

Mode is used to carryover the requests to a separate device in the other ModBus network from the
ModBus network, in which this node is configured. The overall configuration of the node is made in the tab
"Node"(Fig. 5) by the parameters:

• The state of the node, as follows: Status, «Enable» and the name of the database containing the
configuration.
• Id, name and description of the node.
• The state, in which the node must be translated at boot: «To enable».
• Address of the node in the ModBus source network from 1 to 247.
• Inbound traffic, to the network of which the node is belonged to. It is selected from the list of
input transport of the subsystem "Transports" of OpenSCADA. Specifying as the transport the
symbol "*" makes this node a participant of any ModBus network with the processing of requests
from any transport.
• Variant of the ModBus protocol, requests in which must be processed by the node from the list:
All, RTU, ASCII, TCP/IP.
• The choice of the mode, in this case the mode "Gateway of the node".
• Transport, in which the request must be redirected, from the list of outgoing transports of
subsystem "Transports".
• Protocol in which to redirect the request.
• Address of the node of ModBus network from 1 to 247, in which the request is forwarded to.

The modules <ModBus> of subsystem “Data acquisition” and subsystem “Transport protocols” 345

Fig.5. The tab “Node” of the configuration page of the node of the protocol in the “Gateway of the node”

mode.

The mode of the node of the protocol “Gateway of the network”

Mode is used to carryover the requests of the network at whole to the other ModBus network from the
ModBus network, in which this node is configured. Ie request to the device with any address will be sent to
another network, without diverting. The overall configuration of the node is made in the tab "Node"(Fig. 6)
by the parameters:

• The state of the node, as follows: «Enable» and the name of the database containing the
configuration.
• Id, name and description of the node.
• The state, in which the node must be translated at boot: «To enable».
• Incoming transport of the network, from which the requests are transfered.It is selected from the
list of input transport of the subsystem "Transports" of OpenSCADA.
• Variant of the ModBus protocol, requests in which must be processed by the node from the list:
All, RTU, ASCII, TCP/IP.
• The choice of the mode, in this case the mode "Gateway of the network".
• Transport, in which the request must be redirected, from the list of outgoing transports of
subsystem "Transports".
• Protocol in which to redirect the request.

The modules <ModBus> of subsystem “Data acquisition” and subsystem “Transport protocols” 346

Fig.6. The tab “Node” of the configuration page of the node of the protocol in the “Gateway of the

network” mode.

The modules <ModBus> of subsystem “Data acquisition” and subsystem “Transport protocols” 347

 2.3 Report of the ModBus requests

To be able to monitor and to diagnosing the correct implementation of requests to the various
components the a module provides an opportunity to incorporate the report of the requests that pass through
the protocol module. The report included by indication of non zero number of entries in the tab "Report" of
the page of the module of the protocol(Fig.7).

Fig.7. “Report” tab of the page of the module of the protocol.

The modules <ModBus> of subsystem “Data acquisition” and subsystem “Transport protocols” 348

 3. Data acquisition module
Module of the data acquisition provides an opportunity to interrogate and write registers and bits of

devices through protocol modes TCP, RTU, ASCII and commands of request 0x01 - 0x06, 0x0F, 0x10.

 3.1. Controller of data

For addition of a ModBus data source the controller is created and configured in the system
OpenSCADA. Example of the configuration tab of the controller is depicted in Fig.8.

Fig.8. Configuration tab of the controller.

Using this tab you can set:
• The state of the controller, as follows: Status, «Enable», «Run» and the name of the database
containing the configuration.
• Id, name and description of the controller.
• The state, in which the controller must be translated at boot: «To enable» and «To start».
• Names of tables to store the configuration of the parameters of the controller for standard and
logical types.
• The acquisition schedule policy and the priority of the task of data acquisition.
• ModBus protocol, used for request to real device (TCP/IP, RTU or ASCII).

The modules <ModBus> of subsystem “Data acquisition” and subsystem “Transport protocols” 349

• Address of outbound transport from the list of configured outbound transports in the subsystem
"Transports" of OpenSCADA.
• ModBus destination node. In the case of protocols RTU and ASCII — this is the unique address
of the physical device, and when TCP/IP — the identifier of the unity.
• Combining fragments of registers. Standard functions 01-04 let to request at once multiple
adjacent registers or bits. This strategy often allows to optimize the traffic and time. However, the
required registers are not always located adjacent to each other, this option allows you to collect
them in blocks of up to 100 registers, or 1600 bits. The installing of this parameter must be
approached with caution, since not all devices support access to registers between fragments.
• Use multi-items write functions (0x0F,0x10). Instead one-item write will used multi-items
functions.
• Connection timeout in milliseconds. Specifies the time interval during which the answer is
expected. If there is zero waiting time by default the transport waiting time is used. Allows taking
into account individual properties of the controller in the common network.
• Time of connection recovery in seconds. Specifies the time interval after which the re-attempt of
the request to previously inaccessible device is done.
• Attempts of request for the protocols RTU and ASCII. Indicates the number of attempts by the
repetition of the request in case of incomplete or damaged answer.
• Maximum request block size (bytes). Maximum size (bytes) of registers and coils blocks set. This
usefull for some controllers with like limits.

The modules <ModBus> of subsystem “Data acquisition” and subsystem “Transport protocols” 350

 3.2. Parameters

Data acquisition module provides two types of parameter: "Standard"(std) and "logical"(logic).
Additional configuration fields, the parameters of this module are:

• "Standard"(std):
• Attributes list — contains a structured list of configuration attributes ModBus.

• "logical"(logic):
• Parameter template — DAQ parameter's template address.

Standard parameter type(std)

Main page of configuration parameters of the standard type is shown in Figure 9.

Fig.9. Сonfiguration tab of the standard parameter type.

The structure of the attribute in the parameter list of attributes can be written as follows:
<dt>:<numb>:<wr>:<id>:<name>.

Where:
dt — Type of ModBus data (R-register, C-bit, RI- input register, CI-input bit). R and RI can

expanded by suffixes: i2-Int16, i4-Int32, f-Float, b5-Bit5.
numb — number of reguster or bit of ModBus device (decimal, octal or hexadecimal);
wr — read-write mode (r-read, w-write, rw-read and write);

The modules <ModBus> of subsystem “Data acquisition” and subsystem “Transport protocols” 351

id — ID of the attribute OpenSCADA;
name — name of the attribute OpenSCADA.

Line which start symbol '#' is commentary and processing for it pass.

In accordance with a specified list of attributes interrogation and the creation of the attributes of the
parameter is carried out(Figure 10).

Fig.10. Tab of the attributes of the standard parameter type.

The modules <ModBus> of subsystem “Data acquisition” and subsystem “Transport protocols” 352

Logical parameter type(logic)

Main page of configuration parameters of the logical type is shown in Figure 11.

Рис.11. Сonfiguration tab of the logical parameter type.

When forming a template for the logical type of the parameter of the controller, do not take into account
the reference format template, since it is not used and can be omitted. Same reference value, when
configuring the the template (Fig. 12), written in the format: <dt>:<numb>:<wr>.

Where:
dt — Type of ModBus data (R-register, C-bit, RI- input register, CI-input bit). R and RI can

expanded by suffixes: i2-Int16, i4-Int32, f-Float, b5-Bit5.
numb — number of reguster or bit of ModBus device (decimal, octal or hexadecimal);
wr — read-write mode (r-read, w-write, rw-read and write), emty value is interpretated as "rw".

The modules <ModBus> of subsystem “Data acquisition” and subsystem “Transport protocols” 353

Рис.12. Tab "Template configuration" of the logical parameter type.

The module provides a special treatment of a number of attributes of the template:
• f_frq — Frequency computation procedure template, or the time after the last calculation, the
negative, in seconds, for scheduling of CRON, read-only.
• f_start — First calculate of template's procedure, start, read-only.
• f_stop — Last calculate of template's procedure, stop, read-only.
• f_err — The parameter error, full access. Value of the attribute is set to the parameter's error
attribute "err".
• SHIFR — The parameter code, read-only.
• NAME — The parameter name, read-only.
• DESCR — The parameter description, read-only.
• this — The parameter object, allow access to attributes of the parameter, for example to their
archives access.

The modules <ModBus> of subsystem “Data acquisition” and subsystem “Transport protocols” 354

In accordance with the pattern underlying parameter, we get a set of attributes of the parameter Fig.13.

Fig.13. Tab of the attributes of the logical parameter type.

 3.3. User programming API

In view of the module support logical type parameters make sense to provide a number of functions the
user API to call from a template of logical parameter.

The object "Controller" (this.nodePrev())
• string messIO(string pdu) — sending PDU <pdu> through the transport of controller object by
means of ModBus protocol. PDU query result is placed instead of the query <pdu>, and the error
returned by the function.

The modules <ModBus> of subsystem “Data acquisition” and subsystem “Transport protocols” 355

The module of subsystem “Data
acquisition”<DCON>

Module: DCON
Name: DCON client
Type: DAQ
Source: daq_DCON.so
Version: 0.5.1
Author: Roman Savochenko, Almaz Kharimov
Translated: Maxim Lysenko

Description:
Provides an implementation of DCON-client protocol. Supports I-7000 DCON
protocol.

License: GPL

DCON — the protocol of controllers' family ADAM(http://www.advantech.com/, http://ipc2u.ru/), ICP
DAS(http://www.icpdas.com/, http://ipc2u.ru/), RealLab(http://www.RLDA.ru/) and the like ones. It uses
serial lines RS-485 to transfer data.

This module provides the ability of input/output of information from various devices on the protocol
DCON. Also, the module implements the functions of the horizontal reservation, namely, working in
conjunction with the remote station of the same level.

 1. General description of the protocol DCON
DCON protocol requires one lead(requesting) device in the line (master), which can send commands to

one or more driven devices (slave), referring to them by a unique address in the line. Syntax of the
commands of the protocol allows the address 255 devices at one line of standard RS-485.

Initiative to exchange always comes from the leading device. Slave devices listen the line. Master
request (package, the sequence of bytes) in the line and turns into a listening the line. Slave device responds
to the request, which came to him.

The module of subsystem “Data acquisition”<DCON> 356

http://www.rlda.ru/
http://ipc2u.ru/
http://www.icpdas.com/
http://ipc2u.ru/
http://www.advantech.com/

 2. Module
This module provides the ability of clear interrogation and record of input-output ports of devices that

are compatible with ICP DAS I-7000. On the settings tabs of DCON module the necessary settings are
inserted, and on the attributes tabs the corresponding to the given parameters variables of input-output
appear.

 2.1. Data controller

For addition of the DCON data source the controller is created and configured in the system
OpenSCADA. Example of the configuration tab of the controller of the type is depicted in Figure 1.

Fig.1. Configuration tab of the controller.

From this tab you can set:
• The state of the controller, as follows: Status, «Enable», «Run» and the name of the database
containing the configuration.
• Id, name and description of the controller.
• The state, in which the controller must be translated at boot: «To enable» and «To start».
• Name of table to store the configuration of the parameters of the controller.
• The acquisition schedule policy and the priority of the task of data acquisition.
• Name of the outgoing transport of serial interface configured in the module of transport "Serial".
• Request tries.

The module of subsystem “Data acquisition”<DCON> 357

 2.2. Parameters

Module DCON provides only one type of parameters - "Standard". On the parameters tab you can set:
• The state of the parameter "Enable": requires disabling-enabling for the changes on this tab take
effect.
• Id, name and description of the parameter.
• The state, in which the parameter must be translated at boot: "To enable".
• Address of the device in the RS-485 network. In decimal from 0 to 255.
• Flag of the checksum control. It must match to the specified in the I/O device.
• The host signal. It is provided for the control of the host by the devices of the network. It must
match the watchdog settings of the devices.
• The method of the analog inputs (AI) reading or the lack thereof.
• The range of the analog inputs (AI). It participates in the work only for the given method of the
analog inputs reading and should match the device settings.
• The method of analog outputs (AO) writing or the lack thereof.
• The range of the analog outputs (AO). It participates in the work only for the given method of
analog outputs writing and should match the device settings.
• The method of the digital inputs (DI) reading or the lack thereof.
• The method of digital outputs (DO) writing or the lack thereof.
• The method of the counter inputs (CI) reading or the lack thereof.

Fig.2. Configuration tab of the parameter.

The module of subsystem “Data acquisition”<DCON> 358

In accordance with the settings of the parameter and the interrogation and creation of the attributes is
carried out(Fig. 3).

Fig.3. Tab of the attributes of the parameter.

The module of subsystem “Data acquisition”<DCON> 359

 3. Compatibility table of input/output modules of different
manufacturers

№ IO (DCON Method)
NILAP

(http://www.rlda.ru/)
ICPDAS

(http://www.icpdas.com/)
Advantech

(http://www.advantech.com/)
1 1AI(#AA) NL-1RTD I-7013 ADAM-4011, 4013, 4012, 4016

2
1AI(#AA) -
3DO(^AADOVVV)

NL-1RTD

3 4AI(#AA) NL-4RTD

4
4AI(#AA) -
3DO(^AADOVVV)

NL-4RTD, CL-4RTD

5
1AI(#AA) -
1DI(@AADI) -
2DO(@AADO)

I-7011, I-7012, I-7014

6
1AI(#AA) -
1DI(@AADI) -
4DO(@AADO)

I-7016P

7
2AI(#AA) -
1DI(@AADI) -
4DO(@AADO)

I-7016

8
8AI(#AA) -
6DO(@AADODD)

I-7005

9 3AI(#AA) I-7033
10 6AI(#AA) I-7015 ADAM-4015

11 8AI(#AA) NL-8AI, NL-8TI I-7017, I-7018, I-7019R
ADAM-4017, ADAM-4018,
ADAM-4019

12
8AI(#AA) -
2DO(^AADOVVV)

CL-8TI

13
8AI(#AA) -
3DO(^AADOVVV)

NL-8AI, NL-8TI, CL-
8AI

14 10AI(#AA) I-7017Z, I-7018Z
15 16AI(#AA^AA) NL-8AI

16
16AI(#AA^AA) -
3DO(^AADOVVV)

NL-8AI, RL-16AIF

17 20AI(#AA) I-7017Z
18 1AO(#AA) NL-1AO I-7021 ADAM-4021
19 2AO(#AA) NL-2AO, CL-2AO I-7022 ADAM-4022
20 4AO(#AA) NL-4AO, CL-4AO I-7024 ADAM-4024
21 14DI(@AA) I-7041
22 16DI(@AA) NL-16DI, NL-16HV I-7051, I-7053 ADAM-4051, ADAM-4053

23
16DI(@AA) -
2DO(^AADOVVV)

NL-16DI, NL-16HV, CL-
16DI

24 8DI(@AA,FF00) NL-8DI I-7052, I-7058, I-7059 ADAM-4052

25
8DI(@AA) -
2DO(^AADOVVV)

NL-8DI, CL-8DI

26 2DO(@AA,0300) NL-2R

27 4DO(@AA,0F00)
NL-4R, NL-4DO, CL-
4DO

ADAM-4060

28
3DI(@AA) -
4DO(@AA,0F00)

NL-4DO

29 8DO(@AA,FF00)
NL-8R, NL-8DO, RL-
8RC, CL-8DO, CL-8RC

ADAM-4068, ADAM-4069

The module of subsystem “Data acquisition”<DCON> 360

№ IO (DCON Method)
NILAP

(http://www.rlda.ru/)
ICPDAS

(http://www.icpdas.com/)
Advantech

(http://www.advantech.com/)

30
3DI(@AA) -
8DO(@AA,FF00)

NL-8DO

31 13DO(@AA,1FFF) I-7042
32 16DO(@AA,FFFF) NL-16DO, CL-16DO I-7043, I-7045

33
3DI(@AA) -
16DO(@AA,FFFF)

NL-16DO

34
4DI(@AA) -
8DO(@AA,FF)

I-7044

35
7DI(@AA) -
8DO(@AA,FF)

I-7050 ADAM-4050

36
8DI(@AA) -
8DO(@AA,FF)

I-7055 ADAM-4055

37
4DI(@AA) -
4DO(@AA,F)

I-7060

38 12DO(@AA,0FFF) I-7061

39
8DI(@AA) -
3DO(@AA,7)

i-7063

40
4DI(@AA) -
5DO(@AA,1F)

I-7065

41 7DO(@AA,7F) I-7066, I-7067
42 2CI(#AA) NL-2C ADAM-4080

43
2CI(#AA) -
2DO(@AADO0D)

I-7080

44
2CI(#AA) -
4DO(@(^)AADO0D)

NL-2C

45 3CI(#AA) I-7083

The module of subsystem “Data acquisition”<DCON> 361

http://www.advantech.com/
http://www.icpdas.com/
http://www.rlda.ru/

The module of subsystem “Data acquisition”
<ICP_DAS>

Module: ICP_DAS
Name: ICP_DAS equipment
Type: DAQ
Source: daq_ICP_DAS.so
Version: 0.8.0
Author: Roman Savochenko
Translated: Maxim Lysenko

Description:
Provides support for ICP DAS hardware. The support of I-87000 and I-7000 DCON
modules and I-8000 fast modules is included.

License: GPL

The module provides the OpenSCADA system with the support of various equipment of ICP DAS
company (http://www.icpdas.com/, http://ipc2u.ru/) through the API library of company libi8k.a. Most of
the equipment of the ICP DAS company is working under the DCON protocol, but some new equipment
such as I-8000 Series operates on a parallel bus, while another part is set into the parallel bus slots of I-8000
which are available under the serial interface and DCON protocol, they are not addressed directly and
require call of the specialized command of the slot selection. Access to equipment that uses direct requests
under the DCON protocol, can be implemented by the module DAQ.DCON. Support for the rest of the
equipment is not added to the module DAQ.DCON, but it was implemented in this module due to the
availability of API library of the ICP_DAS company only for the x86_32 platform, which brings
restrictions on access to the equipment of the ICP DAS company and other equipment under the DCON
protocol on the other hardware platforms.

The reason for creating this module was the works with the controller LP-8781 of LinPAC series of
ICP_DAS company with the purpose to implement runtime PLC based on the OpenSCADA system.

API library of the ICP_DAS company (libi8k.a) is available with source code of the module and does
not require separate installation.

The module of subsystem “Data acquisition” <ICP_DAS> 362

http://ipc2u.ru/
http://www.icpdas.com/

 1. Data controller
To add the ICP DAS data source the controller is created and configured in the OpenSCADA system.

Example of the configuration tab of the controller of this type is shown in Figure 1.

Fig.1. Configuration tab of the controller.

From this tab you can set:
• State of the controller, namely: the status, "Enable" and "Run" and the name of the database
containing the configuration.
• Id, name and description of the controller.
• The state, in which the controller must be translated at boot: «To enable» and «To start».
• Name of table to store the configuration of the parameters of the controller.
• The period and the priority of the task of data acquisition.
• Bus, on which the modules are placed. If you specify a serial interface (COMx), then access is
made under the protocol DCON. If the main controller bus is LP-8x81 the access is made through
the parallel bus API or mixed.
• Parameters LinPAC. Wrapped to XML generic parameters of PLC family LinPAC. In generic
cases this field don't edited manual and edited into.
• Data transfer rate for the serial interface. It is indicated for the not main bus.
• Serial request tries.

The module of subsystem “Data acquisition” <ICP_DAS> 363

 2. Parameters
Module provides only one type of parameters - "Standard". On the parameters tab you can set:

• The state of the parameter, namely the type and the status "Enable"
• Id, name and description of the parameter.
• The state, in which the parameter must be translated at boot: "To enable".
• Type of the input-output module.
• Address of the I/O module, in the case of work not on the main bus - in the decimal value from 0
to 255.
• Slot of the module in the case of work with a series of devices I-8000.
• More options of the module. It is used not by all the modules and contains the text in XML. Not
intended for manual editing, and is formed on the Configuration tab, which is usually specific to the
each type of modules.

Fig.2. Configuration tab of the parameter.

The module of subsystem “Data acquisition” <ICP_DAS> 364

In accordance with the parameter settings the poll and the creation of attributes is made (Fig. 3).

Fig.3. Tab of the attributes of the parameter.

 2.1 Module I-8017

Fast analog input module that runs on a parallel bus. Provides speed access to data on one channel at 130
kHz. However, because of the pledged hardware limitations it does not allow to reach speed over 33 kHz
per channel when scanning multiple channels. Data expectation is in the blind cycle, which leads to great
losses of the CPU at high frequencies of the acquisition.

Module provides eight analog input attributes i{x} and eight signs of violation of the upper ha{x} and
the lower la{x} boundaries. Also the configuration tab is available with advanced configuration:

• Number of processed parameters – indicates how many inputs to process. It is characteristic for
the mode of fast data acquisition and used to limit the number of processed channels, commensurate
with used resources of the CPU.
• Frequency of the fast data acquisition (seconds) – indicates how often to carry out fast data
acquisition for the number of channels listed above. Fast mode of data acquisition is turned off by
indicating zero period.
• Modes of the gain for each input define a the following gains: +-1.25V, +-2.5V, +-5V, +-10V and
+-20mA.

The module of subsystem “Data acquisition” <ICP_DAS> 365

 2.2 Module I-8042

Fast digital input/output module works on a parallel bus. Provides 16 attributes for input i{x} and 16 for
the output o{x}.

 2.3 Module I-87019

The module of the analog input for the eight channels works on the serial bus and accessible under the
DCON protocol. Provides eight analog input attributes i{x} and eight signs of violation of the upper ha{x}
and the lower la{x} boundaries. The module provides temperature measurement of cold junctions of
thermocouples.

Module provides the tab "Configuration" with the advanced configuration of modes of inputs: +-15mV,
+-50mV, +-100mV, +-150mV, +-500mV, +-1V, +-2.5V, +-5V, +-10V +-20mA, J type, K type, T type, E
type, R type, S type, B type, N type, C type, L type, M type, L type (DIN43710C).

 2.4 Module I-87024

Analog output module for the four channels working on the serial bus and accessible under DCON
protocol. Provides four analog output attributes o{x}.

In addition it include tab "Configuration" with configuration host watchdog and output values which set
at enable and reset by watchdog.

 2.5 Module I-87057

Digital output at 16 channels working on the serial bus and accessible under DCON protocol. Provides
16 diskret outputs o{x}.

In addition it include tab "Configuration" with configuration host watchdog and output values which set
at enable and reset by watchdog.

 3. LP-8x81 series controllers configuration
For common properties the controllers series LP-8x81 configuration allowed accordingly tab on

module's page, where you can get information about controller's serial number, SDK version and DIP-
switch value, and also set value for controller's watchdog timer. The watchdog timer is disabled by set it to
zero value. Watchdog timer's value updated into controller's task and with it period. The acquisition task
hang consequently follow controller's restart!

Links
Special modules for Linux kernel 2.6.29 for controllers LP-8x81: lp8x81_2629.tgz

The driver from VIA for controllers LP-8x81 network: rhinefet20070212111037.tgz

On standard Linux network driver the speed is droped significant after days work

The patch for build network driver for Linux 2.6.29: build_2.6.29.patch

The module of subsystem “Data acquisition” <ICP_DAS> 366

http://wiki.oscada.org/Doc/ICPDAS/files?get=build_2.6.29.patch
http://wiki.oscada.org/Doc/ICPDAS/files?get=rhinefet20070212111037.tgz
http://wiki.oscada.org/Doc/ICPDAS/files?get=lp8x81_2629.tgz

The module of subsystem “Data acquisition”
<DAQGate>

Module: DAQGate
Name: Gateway of the data sources
Type: DAQ
Source: daq_DAQGate.so
Version: 0.9.5
Author: Roman Savochenko
Translated: Maxim Lysenko

Description:
Allows you to perform the locking of the data sources of the remote OpenSCADA
stations in the local ones.

License: GPL

The main function of this module is the reflection of the data of the “Data acquisition”
subsystem of the remote OpenSCADA stations on the local ones. In its work, the module uses the
self protocol of the OpenSCADA system (Self System) and service functions of the subsystem
“Data acquisition”.

Module realizes the following functions:
• The reflection of the structure of the parameters of the subsystem “Data acquisition” of
the remote station. The structure is periodically synchronized while working.
• Access to the configuration of the parameters. Configuration of the parameters of the
controllers of remote stations is transparently reflected that lets you to change it remotely.
• Access to the current value of the attributes of the parameters and the possibility of their
modification. The values of the attributes of the parameters are updated at a frequency of
execution of the local controller. Requests for modification of the attributes are transmitted
to the remote station.
• Reflection of the archives of values of individual attributes parameters. The reflection of
the archives is realized in two ways. The first method includes creating of the local archive
for the attribute and its synchronization with the remote, the restoration of the archive at the
stop of the station is provided. The second method is the translation of the requests of the
local archive file to the one of the remote station.
• Provides the implementation of the mechanism of the vertical redundancy as an
opportunity to reflect data from the multiple stations at the same level.
• Realization of the functions of horizontal redundancy, namely, working in the
conjunction with the remote station of the same level.

http://wiki.oscada.org.ua/HomePageEn/Doc/SelfSystem?v=1cju

Using of the available redundancy schemes is graphically represented in Figure 1.

Fig.1. Horizontal and vertical redundancy.

The module of subsystem “Data acquisition” <DAQGate> 368

 1. Controller of data
For addition of the data source the controller is created and configured in the system OpenSCADA.

Example of the configuration tab of the controller is depicted in Figure 2.

Fig.2. Configuration tab of the controller.

From this tab you can set:
• The state of the controller, as follows: «Enable», «Run» and the name of the database containing
the configuration.
• Id, name and description of the controller.
• The state, in which the controller must be translated at boot: «To enable» and «To start».
• The acquisition schedule policy and the priority of the task of data acquisition.
• Recurrence interval of time of the attempting to restore a lost connection with the station in
seconds.
• Maximum depth of data of the archive to restore when start in the hours. Zero for disable archive
access.
• The period of synchronization with a remote station in seconds.
• List of the reflected remote stations. Several stations in the list include a mechanism of vertical
redundancy.
• The list of the reflected controllers and parameters. The list can be used as for controllers for the
reflection of all their parameters, and for individual parameters too.
• The commands to go to the configuration of remote stations.

The module of subsystem “Data acquisition” <DAQGate> 369

 2. Parameters
The module does not provide the possibility of setting up the parameters manually, all parameters are

created automatically, taking into account the list of reflected controllers and parameters. Example of the
reflected parameter is shown in Fig. 3.

Fig.3. Configuration tab of the reflected parameter.

The module of subsystem “Data acquisition” <DAQGate> 370

The module of subsystem “Data
acquisition”<SoundCard>

Module: SoundCard
Name: Sound card
Type: DAQ
Source: daq_SoundCard.so
Version: 0.6.2
Author: Roman Savochenko
Translated: Maxim Lysenko
Description: Provides an access to the sound card.
License: GPL

This module is designed to provide data from the inputs of sound cards of the system. The module is
based on the multi-platform library of work with sound PortAudio (http://www.portaudio.com). The feature
of this library is the unified API, which allows you to easily adapt this module to work on different
platforms and even different audio subsystems on a single platform.

Structure of the module is the reflection of the object “Controller” of subsystem “Data acquisition” on a
separate audio input device available in the system. The object “Parameter” of the subsystem “Data
acquisition” reflects a separate channel available from the sound input device to the attribute “val”. The
most functional is to use the attribute “val” in conjunction with the archive, or at least with its buffer. In the
case of the archiving enabling data of the channel of audio input are placed in the buffer of the archive by
the packages with the frequency of data fetch of input device that allows you to perform further operations
on that data. In addition, the last package value is installed as the current value of the attribute. In the case
of archive absence operation of the last package value placing as the current value of the attribute is
performed only.

Also, the module implements the functions of the horizontal reservation, namely, working in conjunction
with the remote station of the same level.

The module of subsystem “Data acquisition”<SoundCard> 371

 1. Controller of the data
To add an audio input device the controller is created and configured in the system OpenSCADA.

Example of the configuration tab of the controller is depicted in Figure 1.

Fig.1. Configuration tab of the controller.

From this tab you can set:
• The state of the controller, as follows: Status, «Enable», «Run» and the name of the database
containing the configuration.
• Id, name and description of the controller.
• The state, in which the controller must be translated at boot: «To enable» and «To start».
• Horizontal mode of redundancy and performance preference of the controller.
• Name of table to store the configuration of the parameters of the controller.
• Card device from the list of available ones.
• Frequency of the fetch of values of cards in hertz.
• Type of values of fetch from the list: Real 32, Integer 32 and Integer 16.

The module of subsystem “Data acquisition”<SoundCard> 372

 2. Parameters
To add a channel of input sound device the parameter of controller is created and configured in the

system OpenSCADA. Example of the configuration tab of the parameter is depicted in Figure 2.

Fig.2. Configuration tab of the parameter.

From this tab you can set:
• Type of the parameter and indicate the status "Enable".
• Id, name and description of the parameter.
• The state, in which the parameter must be translated at boot: «To enable».
• Channel of the audio input device from the list of available channels.

The module of subsystem “Data acquisition”<SoundCard> 373

Tab of attributes of the parameter has the form presented in Figure 3, the tab of the values of the
attribute's archive “val” is presented in Fig.4.

Fig.3. Tab of the attributes of the parameter.

Fig.4. Tab of the values of the archive of the attribute “val”.

The module of subsystem “Data acquisition”<SoundCard> 374

The <OPC_UA> module of “Data acquisition”
and “Transport protocols” subsystems

Parameter Module 1 Module 2
ID: OPC_UA OPC_UA
Name: OPC_UA OPC_UA
Type: DAQ Protocol
Source: daq_daq_OPC_UA.so
Version: 0.6.2 0.6.2
Author: Roman Savochenko
Translated: Maxim Lysenko

Description: Provides the implementation of client
service of OPC UA.

Provides the implementation of the OPC
UA protocol.

License: GPL

OPC (OLE for Process Control) - it is the family of protocols and technologies that provide the single
interface to control the objects of automation and technological processes. The creating and support of
specifications of OPC coordinates an international nonprofit organization OPC Foundation, established in
1994 by the leading manufacturers of industrial automation.

In view of the fact that a significant influence in the OPC Foundation organization has the Microsoft
corporation, OPC protocols, until recently, was single platform and closed, due to binding to the closed
technologies of MS Windows. However, more recently, the OPC Foundation organization has created
multi-platform interfaces such as OPC XML DA and OPC UA. The most interesting of them is the OPC
UA interface, as unifying all the earlier interfaces in an open and multi-platform technology.

This module implements the interface and protocol support for OPC UA in the form of client service,
and as the OPC UA server. Client service of OPC UA is implemented by the same name module of the
subsystem "Data acquisition", and the server is implemented by the subsystem's "Protocols" module.

In the current version of these modules it is implemented the binary part of the protocol and basic
services in unsafe mode and safe mode of policies "Base128Rsa15" и "Base256". Later it is planned to
extend the module to work via HTTP/SOAP and implementation of other OPC UA services.

Although the OPC UA protocol is multi-platform, its specification and SDK are not freely available, but
are provided only to members of the OPC Foundation organization. For this reason, the implementation of
these modules has faced significant obstacles and problems.

First, the protocol OPC UA is complex and its realization in general without specification an extremely
laborious. For this reason, the work on these modules for a long time was not started, and only thanks to
sponsorship by an organization-member of OPC Foundation the OpenSCADA project received
documentation of the specification. The SDK and source code ANSIC-API of the OPC-UA protocol have
not been received due to their incompatibility with the GPL license and as a consequence, the potential
threat of violation of the license when working with source code, which could lead to subsequent legal
problems with the free distribution of these modules.

Secondly, even the presence of specification does not allow to solve some technical question without an
example of implementation and the possibility of test the working prototype of the client and server of OPC
UA. For example, it is the technical features of the implementation of symmetric encryption algorithms and
the keys for them do not allowed to make the implementation of support for security policy at once.

To debug the operation of modules the demonstration software of company Unified Automation
consisting of the OPC UA client - UA Expert and Server - OPC UA Demo Server, from SDK package, was
used.

The <OPC_UA> module of “Data acquisition” and “Transport protocols” subsystems 375

 1. OPC UA protocol
OPC UA - is the platform-independent standard by the means of which the systems and devices of

various types can interact by sending messages between the client and the server through various types of
networks. The protocol supports secure communication through the validation of clients and servers, as
well as the counteraction to attacks. OPC UA defines the concept Services that the servers can provide, as
well as services that the server supports for the client. Information is transmitted as the data types defined
by OPC UA and producer, in addition the servers define object model, for which the clients can implement
the dynamic review.

OPC UA provides the combination of integrated address space with service model. This allows the
server to integrate data alarms and events, the history in this address space, as well as provide access to
them through integrated services. Services also provide an integrated security model.

OPC UA allows servers to provide for clients the definitions of types for access to the objects of the
address space. OPC UA supports the provision of data in various formats, including binary structures and
XML-documents. Through the address space clients can request the server metadata that describe the data
format.

OPC UA adds the support for multiple connections between nodes instead of a simple hierarchy. Such
flexibility in combination with types' definition allows to use OPC UA for solving problems in the wide
problem area.

OPC_UA is designed to provide the reliable output of data. The main feature of all OPC servers - the
ability to issue the data and events.

OPC_UA is designed to support the wide range of servers, from simple PLC to industrial servers. These
servers are characterized by the wide range of sizes, performance, platforms and functional capacity.
Consequently, the OPC UA defines the comprehensive set of possibilities, and the server can implement the
subset of these possibilities. To ensure the interoperability between OPC UA defines the subsets, named the
Profiles that the server can indicate for agreement Clients may subsequently make the review of server's
profiles and make the interaction with the server, based on the profiles.

OPC UA specification is designed as the core in the layer, isolated from the underlying computer
technologies and network transports. This allows OPC UA if necessary to expand on the future
technologies without exclusion the framework of design. Currently, the specification defines two ways to
data encode: XML/text and UA Binary. In addition, the two types of transport layer are defined: TCP and
HTTP/SOAP.

OPC UA is designed as the solution for migration from OPC clients and servers, which are based on
Microsoft COM technologies. OPC COM servers (DA, HDA and A&E) can be easily reflected in the OPC
UA. Producers can independently make such migration or recommend users to use wrappers and converters
between these protocols. OPC UA unifies the previous models in the single address space with the single
set of services.

The <OPC_UA> module of “Data acquisition” and “Transport protocols” subsystems 376

 2. The module of the protocol implementation
Protocol module contains the implementation code for the protocol part of the OPC UA for both the

client and for server services. To construct the OPC UA server it is enough to create an incoming transport,
for ordinarily this TCP-transport of module Sockets, and select in it the module of the protocol, and also
configure although one enpoint node of protocol module, about it bellow.

 2.1. Service the requests on the OPC UA protocol

Incoming requests to the module-protocol are processed by the module in accordance with configured
end points of OPC UA (EndPoints) (Fig. 1).

Fig.1. End points of the protocol.

Endpoint of the OPC UA protocol is actually the server object of OPC UA. End points in OPC UA can
be either local or remote. The local one is designed to provide the resources of OpenSCADA station to
protocol OPC UA, while the remote end points are both for the service and review of available OPC-UA
units, and for locking requests to remote stations. In this version of the module is only supported the
configuration of the local endpoints.

The general configuration of the endpoint is made on the main tab of the endpoint page (Fig. 2) with the
parameters:

• Node status, namely: the state, "Enable" and the name of the database containing the
configuration.
• ID, name and description of the node.

The <OPC_UA> module of “Data acquisition” and “Transport protocols” subsystems 377

http://wiki.oscada.org/HomePageEn/Doc/Soskets?v=1nz

• The state, in which to transfer the node at start: "Enable".
• Type of the protocol coding. At the moment it is only "binary".
• URL of the end point.
• The server certificate in the PEM format.
• The private key in the PEM format.
• Security Server Policy.

Fig.2. The main tab of the end node.

The <OPC_UA> module of “Data acquisition” and “Transport protocols” subsystems 378

 3. Data acquisition module
Data acquisition module provides the ability of inquiry and recording the value's attributes (13) of points

with the "Variable" type.

 3.1. Data controller

To add the OPC UA data source controller in the OpenSCADA system is created and configured. An
example of the configuration tab of the controller is shown in Figure 3.

Fig.3. Controller's configuration tab.

From this tab you can set:
• The state controller, namely: Status, "Enable", "Run"and the name of the database containing the
configuration.
• ID, name and description of the controller.
• The state, in which to transfer the controller at start: "Enable", "Run".
• The name of the table to store the configuration of parameters of the controller.
• The acquisition schedule policy and the priority of the task of data acquisition.
• The period of the synchronization of the configuration of attributes of the parameters with the
remote station, and try time for connection restore.

The <OPC_UA> module of “Data acquisition” and “Transport protocols” subsystems 379

• The address of the outgoing transport from the list of configured outgoing transports in the
subsystem "Transports" of OpenSCADA.
• The URL of the endpoint of remote station.
• Security policy and the mode of messaging security.
• The client certificate and private key in PEM format.
• The limit of the number of attributes in the parameter for the import mode of all the attributes
belonging to the object.

To facilitate the identification of nodes on the remote station, as well as their choice to be inserted in the
parameter of the controller in the controller's object it is provided the navigation on the remote station's
nodes tab, where you can walk through the tree of objects and familiar with their attributes (Figure 4).

Fig.4. The "Server nodes browser" tab of the controller's page.

The <OPC_UA> module of “Data acquisition” and “Transport protocols” subsystems 380

 3.2. Parameters

Data acquisition module provides only one type of parameters - "Standard". Additional configuration
field of the parameter of the module (Fig. 5) is the list of OPC UA nodes. Attribute in this list is written as
follows: [ns:id].

Where:
ns – names scope, number, zero value can missed;
id – node identifier, number, string, bytes string and GUID.

Example:
84 – root directory;
3:"BasicDevices2" – basic devices node in the names scope 3 and string view;
4:"61626364" – node in the names scope 4 and byte string view;
4:{40d95ab0-50d6-46d3-bffd-f55639b853d4} – node in the names scope 4 and GUID view.

Fig.5. The configuration tab of the parameter.

The <OPC_UA> module of “Data acquisition” and “Transport protocols” subsystems 381

In accordance with the specified list of nodes the inquiry and the creation of the parameter's attributes is
made (Fig. 6).

Fig.6. The parameter's attributes tab.

 4. Notes
During the implementation of modules supporting OPC UA was detected several inconsistencies with

the official SDK specification OPC UA:
• OPC UA Part 6 on page 27 contains an image of a handshake to establish a secure channel. The
message of session create is signed by the client symmetric key and encrypted by server. In fact,
both signature and encryption of the server key made.
• OPC UA Part 4 on page 141 contains a description of data structure signatures, which are the first
data signature, and then the string algorithm. In fact, the reverse order is implemented.

The <OPC_UA> module of “Data acquisition” and “Transport protocols” subsystems 382

The <BFN> module of “Data acquisition”
subsystem

Module: BFN
Name: BFN module
Type: DAQ
Source: daq_BFN.so
Version: 0.5.1
Author: Roman Savochenko
Financing: JSC «Jaroslavskiy Broiler»

Description:
Support of the BFN modules for Viper CT/BAS and others from "Big Dutchman"
(http://www.bigdutchman.com).

License: GPL

This module is written for the current data and alarms acquisition from the data concentration module
BFN(BigFarmNet) of the poultry automation of "Big Dutchman" company (http://www.bigdutchman.com).
To the one module of data concentration (BFN) can be connected multiple controllers of the poultry house,
for example, Viper CT/BAS — a computer to control the microclimate and production processes, designed
in a modular principle; it is provided to maintain an optimal climate and production efficiency in the
poultry-yard.

An inquiry of the BFN module is made by the SOAP/XML protocol, during which it can be obtained at
once all available data of the one house computer. As a result of this and because of the connection of
multiple house computers to one BFN module total query time of current data can reach 30 (thirty) seconds!

Data and alarms are transmitted as signals' codes and alarms, and, therefore, to convert them to text
messages it is necessary to have correspondence tables. Formation of a signals' code table and alarms are
provided by this module at the module's object level and in the "Symbols" tab (Fig. 1). For use in
multilingual projects data tables can be configured separately for each language.

The <BFN> module of “Data acquisition” subsystem 383

http://www.bigdutchman.com/
http://www.bigdutchman.com/
http://www.yarbroiler.ru/

Fig.1. Configuration tab of signals and alarms symbols.

The <BFN> module of “Data acquisition” subsystem 384

 1. Data controller
For addition of the data source the controller is created and configured in the OpenSCADA system.

Example of the configuration tab of the controller is depicted in Figure 2.

Fig.2. Configuration tab of the controller.

From this tab you can set:
• The state of the controller, as follows: «Enable», «Run» and the name of the database containing
the configuration.
• Id, name and description of the controller.
• The state, in which the controller must be set at boot: «To enable» and «To start».
• The acquisition schedule policy and the priority of the task of data acquisition.
• Synchronization period of configuration.
• An address of the transport by which the access to the BFN module is made. Usually the TCP-
sockets of the transports' module "Soskets" are used.
• User and password to connect to the BFN module.

The <BFN> module of “Data acquisition” subsystem 385

http://wiki.oscada.org/HomePageEn/Doc/Soskets?v=1nz

 2. Parameters
The module doesn't provides the possibility of creating parameters manually, all parameters are

automatically created taking into account the list of house controllers connected to the BFN module. In fact,
one parameter - a single house controller and all its data is presented as the attributes of the parameter. One
controller of the house computer contains approximately 250 parameters, and some up to 500. As a result,
the total amount of information of one BFN can reach 2000 signals! An example of the "Attributes" tab of
the poultry house computer's parameter is shown in Fig. 3.

Fig.3. The "Attributes" tab of the poultry house computer's parameter.

Obtained alarms of the poultry computer are placed in the alarms list and to the messages' archive with:
• Category: alBFN:{cntrId}:{house}:{nodeCode}:{alarmId}, where:

• cntrId - controller's ID;
• house - house or the parameter's object ID;
• nodeCode - the code of the node-signal for which the alarm is formed;
• alarmId - alarm's ID.

• Name: {HouseName} > {NodeName} : {AlarmMess}, where:
• HouseName - house name;
• NodeName - house or the parameter's object name;
• AlarmMess - alarm message.

• Alarm level: -4(Error) - error; 1(Info) - norm.

The <BFN> module of “Data acquisition” subsystem 386

Module <Sockets> of subsystem “Transports”
Module: Sockets
Name: Sockets
Type: Transport
Source: tr_Sockets.so
Version: 1.5.1
Author: Roman Savochenko
Translated: Maxim Lysenko

Description:
Provides transport, based on the socket. It supports internet and unix sockets. Internet
socket uses TCP and UDP protocols.

License: GPL

Transport module Sockets provides support of transport based on the socket to the system. incoming and
outgoing transport, based on internet sockets: TCP, UDP and UNIX sockets are supported. Addition of the
new incoming and outgoing sockets can be done through the configuration of the transport subsystem in
any system configurator of OpenSCADA.

Module <Sockets> of subsystem “Transports” 387

 1. Incoming transports
Configured and running incoming transport opens the server socket for the expectation of connection of

the clients. In the case of the UNIX socket, the UNIX socket file is created. TCP and UNIX sockets are
multi-stream, ie when the client connects to a socket of these type, the client socket and the new stream in
which the client is served are created. Server socket in this moment switches to the waiting for the request
from the new client. Thus the parallel service of the clients is achieved.

Each incoming socket is necessarily associated with one of the available transport protocols, to which
incoming messages are transmitted. In conjunction with the transport protocol is supported by a mechanism
of the combining of pieces of requests, disparate while transferring.

Configuration dialog of the incoming socket is depicted in Figure 1.

Fig.1. Configuration dialog of the incoming socket.

Module <Sockets> of subsystem “Transports” 388

Using this dialog you can set:
• The state of transport, namely: “Status”, “Running” and the name of the database, containing the
configuration.
• Id, name and description of transport.
• Address of the transport. The format of the address is listed in the table below.
• The choice of transport protocol.
• The state, in which the controller must be translated at boot: «Running».
• The length of the queue of sockets, the maximum number of clients to serve and the size of the
input buffer.
• The limits the mode "Keep-alive" by requests counter and timeout.
• Transport's tasks priority.

Features of the formation of addresses of incoming sockets are shown in the table below:

Socket's
type

Address

TCP

TCP:{address}:{port}:{mode}
where:

• address – Address, on which the socket is opened. It must be one of the addresses of
the host. If nothing is specified, the socket will be available in all the host interfaces.
There may be as symbolic as well as IP presentation of address.

• port – Network port, on which the socket is opened. Indication of the character name
of the port (according to /etc/services) is available.

• mode – mode of working of the incoming socket (0 — close the connection after the
session reception-response, 1 — do not close).

Example: "TCP::10001:1" — TCP-socket is available on all interfaces, is opened on port
10001 and doesn't close the connection.

UDP

UDP:{address}:{port}
where:

• address – the same as in the TCP;
• port – the same as in the TCP.

Example: "UDP:localhost:10001" — UDP-socket is only available on the "localhost"
interface and is opened on the port 10001.

UNIX

UNIX:{name}:{mode}
where:

• name – UNIX socket file name;
• mode – the same as in the TCP.

Example: "UNIX:/tmp/oscada:1" — UNIX-socket is available through the file /tmp/oscada
and it doesn't close the connection.

Module <Sockets> of subsystem “Transports” 389

 2. Outgoing transports
Configured and running outgoing transport opens a connection to the specified server. In the case of

destroying of the connection, outgoing transport is disconnected. In order to resume the connection
transport must be re-run.

Main tab of the configuration page of outgoing socket is shown in Fig.2.

Fig.2. Main tab of the configuration page of the outgoing socket.

Using this dialog you can set:
• The state of transport, namely: "Status", "Running" and the name of the database, containing the
configuration.
• Id, name and description of transport.
• Address of the transport. The format of the addresses is listed in the table below.
• The state, in which the controller must be translated at boot: «To start».
• Connection timings in format: "conn:next[:rep]". Where:

• conn — maximum time for connection respond wait, in seconds;
• next — maximum time for continue respond wait, in seconds;
• rep — minimum repeat timeout, in seconds.

Module <Sockets> of subsystem “Transports” 390

The addresses of outgoing sockets of different types are formed as follows:

Socket's
type

Address

TCP/UDP

TCP:{address}:{port}
UDP:{address}:{port}
where:

• address – Address to which the connection is performed. There may be as the
symbolic representation as well as IP one of the address.

• port – Network port, with which the connection is made. Indication of the character
name of the port is available(according to /etc/services).

Example: "TCP:127.0.0.1:7634" — To connect to the port 7634 on the host 127.0.0.1.

UNIX

UNIX:{name}
where:

• name – UNIX socket file name.
Example: "UNIX:/tmp/oscada" — to connect to the UNIX-socket through the file
/tmp/oscada.

Module <Sockets> of subsystem “Transports” 391

Module <SSL> of subsystem “Transports”
Module: SSL
Name: SSL
Type: Транспорт
Source: tr_SSL.so
Version: 1.0.1
Author: Roman Savochenko
Translated: Maxim Lysenko

Description:
Provides transport based on the secure sockets' layer. OpenSSL is used and SSLv2,
SSLv3 and TLSv1 are supported.

License: GPL

The module SSL of the transport provides the support of transport based on secure sockets layer (SSL)
into the system. In the basis of the module there is the library OpenSSL. Incoming and outgoing transports
of protocols SSLv2, SSLv3 and TLSv1 are supported.

It is possible to add new incoming and outgoing transports through the transport subsystem configuration
in any configurator of OpenSCADA system.

Module <SSL> of subsystem “Transports” 392

http://www.openssl.org/

 1. Incoming transports
The configured and running incoming transport opens server SSL-socket for the expectation of

connection of the clients. SSL-socket is a multi-stream, ie when the client connects, the client SSL-
connection and a new stream in which the client is served are created. Server SSL-socket in this moment
switches to the waiting for the request from the new client. Thus the parallel service of the clients is
achieved.

Each incoming transport is necessarily associated with one of the available transport protocols, to which
incoming messages are transmitted. In conjunction with the transport protocol is supported by a mechanism
of the combining of pieces of requests, disparate while transferring.

Configuration dialog of the incoming SSL-transport is depicted in Figure 1.

Fig.1. Configuration dialog of the incoming SSL-transport.

Using this dialog you can set:
• The state of transport, namely: “Status”, “Running” and the name of the database, containing the
configuration.

Module <SSL> of subsystem “Transports” 393

• Id, name and description of transport.
• Address of the transport in the format: "[address]:[port]:[mode]", where:

• address – Address, on which the SSL is opened. It must be one of the addresses of the
host. If the "*" is indicated then SSL will be available in all the host's interfaces. There may
be as the symbolic representation as well as IP one of the address.
• port – Network port, on which the SSL is opened. Indication of the character name of the
port (according to /etc/services) is available.
• mode – SSL-mode and version (SSLv2, SSLv3, SSLv23, TLSv1). By default and in case
of error the SSLv23 is used.

• The choice of transport protocol.
• The state, in which the transport must be translated at boot: «To start».
• Certificates, private SSL key and password of private SSL key.
• The maximum number of clients to serve and the size of the input buffer.
• The limits the mode "Keep-alive" by requests counter and timeout.
• Transport's tasks priority.

Module <SSL> of subsystem “Transports” 394

 2. Outgoing transports
Configured and running outgoing transport opens the SSL connection to the specified server. In the case

of destroying of the connection, outgoing transport is disconnected. In order to resume the connection
transport must be re-run.

Main tab of the configuration page of outgoing SSL-transport is shown in Fig.2.

Fig.2. Main tab of the configuration page of the outgoing SSL-transport.

Using this dialog you can set:
• The state of transport, namely: "Status", "Running" and the name of the database, containing the
configuration.
• Id, name and description of transport.
• Address of the transport in the format: "[address]:[port]:[mode]", where:

• address – Address with which the connection is made. There may be as the symbolic
representation as well as IP one of the address.
• port – Network port with which the connection is made. Indication of the character name
of the port (according to /etc/services) is available.
• mode – SSL-mode and version (SSLv2, SSLv3, SSLv23, TLSv1). By default and in case
of error the SSLv23 is used.

Module <SSL> of subsystem “Transports” 395

• The state, in which the transport must be translated at boot: «To start».
• Certificates, private SSL key and password of private SSL key.
• Default timeout for connection and respond wait, separated.

 3. Certificates and keys
For a valid module work certificates and private keys are required. In the case of the incoming SSL-

transport (the server) they are compulsory. In the case of outgoing SSL-transport they can not be even
installed though their using is desirable.

The simplest configuration of the certificate is self-subscription certificate and private key. The
following describes how to create them using the tool openssl:

Generation the secret key
$ openssl genrsa -out ./key.pem -des3 -rand /var/log/messages 2048
Generation of self-subscription certificate
$ openssl req -x509 -new -key ./key.pem -out ./selfcert.pem -days 365

Next, the contents of the files key.pem and selfcert.pem is copied into the text field of the certificate and
key. Password of the private key is installed in the appropriate field.

Module <SSL> of subsystem “Transports” 396

Module <Serial> of subsystem “Transports”
Module: Serial
Name: Serial Interface
Type: Transport
Source: tr_Serial.so
Version: 0.8.0
Author: Roman Savochenko
Translated: Maxim Lysenko

Description:
Provides a serial interface. It is used to data exchange via the serial interfaces of type
RS232, RS485, GSM and more.

License: GPL

Module of transport Serial provides support of transports based on the type of serial interfaces RS232,
RS485, GSM, and others to the system. Incoming and outgoing transports are supported. To add new
incoming and outgoing interfaces is possible by means of configuration of the transport subsystem in the
system configurator of OpenSCADA.

Into modem mode by the module support misc work mode. Misc mode mean an input transport allow,
which wait ingoing connections, and also an output transport allow at idem device. That is the input
transport will ignore all requests while the output transport's established connection allow, in idem time the
output transport will not try make connection while the input transport have connection or other an output
transport connected to other telephone, for example.

 In normal mode, the serial interface is not allowed to reuse one and the same port incoming
and outgoing traffic. Global blocking of the serial device is not carried out in mind the ambiguity of
this process at the system level, and re-use can lead to unexpected problems. If necessary,
Organization of a local serial line with a pair of connected ports is recommended to use the command
"$ socat -d -d pty,raw,echo=0,perm=0666 pty,raw,echo=0,perm=0666".

Module <Serial> of subsystem “Transports” 397

 1. Incoming transports
The configured and runnig incoming transport opens port of serial interface for the expectation of the

requests of the clients. Each incoming interface is necessarily associated with one of the available transport
protocols, to which the incoming messages are transmitted.

Configuration dialog of the incoming serial interface is depicted in Figure 1.

Fig.1. Configuration dialog of the incoming serial interface.

Using this dialog you can set:
• The state of transport, namely: "Status", "Running" and the name of the database, containing the
configuration.
• Id, name and description of transport.
• Address of the transport in the format: "dev:spd:format:[fc]:[mdm]". Where:

• dev — address of the serial device (/dev/ttyS0);
• spd — speed of the serial devices from a number of: 300, 600, 1200, 2400, 4800, 9600,
19200, 38400, 57600, 115200, 230400, 460800, 500000, 576000 or 921600;
• format — asynchronous data format "<size><parity><stop>" (8N1, 7E1, 5O2, ...);
• fc — flow control:

• "h" — hardware (CRTSCTS);
• "s" — software (IXON|IXOFF);
• "rts" — use RTS signal for transfer(false) and check for echo, for pure RS-485.

• mdm — modem mode, listen for 'RING'.
• The choice of transport protocol.
• The state, in which the transport must be translated at boot: "To start".
• Time intervals of the interface in the format of string: "character:frm". Where:

Module <Serial> of subsystem “Transports” 398

• character — character time, in milliseconds. Used for control of the end of the frame;
• frm — the maximum time of the frame in milliseconds. Used to limit the maximum size
of the package of the request (frame).

Transport supports the ability to work as a modem. This mode is activated by the fifth parameter of the
address and includes call waiting from the remote modem (request "RING"), answering the call (command
"ATA") and the subsequent transfer the requests from the remote station to the transport's protocol. Turning
off the communication session is made by the initiator of the connection and leads to the reconnect of the
modem-receiver for the waiting for new calls.

To configure the modem of the incoming transport the special tab "Modem" is provided (Fig. 2).

Fig.2. "Modem" tab of the modem's configuration of the incoming serial interface.

With this dialog you can set the following properties of working with modem:
• Requests timeout of the modem in seconds.
• The time delay before initializing the modem in seconds.
• The time delay after initializing the modem in seconds.
• The first initialization string typically contains the reset command of the modem "ATZ".
• The second initialization string.
• The result string of the modem's initialization, usually "OK", with which the modem answers for
initializing and which must be expected.
• The call's request, usually is "RING", which is sent by the modem in the case of an outgoing call.
• The answer to the call, usually is "ATA", which is sent to the modem to answer the call.
• String result of the answer the call, usually is "CONNECT", with which the modem answers to
the answer command, and that is to be expected.

Module <Serial> of subsystem “Transports” 399

 2. Outgoing transports
Configured and running outgoing transport opens port of the serial interface for the sending the requests

through it.

Main tab of the configuration page of outgoing serial interface is shown in Fig.3.

 Fig.3.
Main tab of the configuration page of outgoing serial interface.

Using this dialog you can set:
• The state of transport, namely: "Status", "Running" and the name of the database, containing the
configuration.
• Id, name and description of transport.
• Address of the transport in the format: "dev:spd:format:[fc]:[modTel]". Where:

• dev — address of the serial device (/dev/ttyS0);
• spd — speed of the serial devices from a number of: 300, 600, 1200, 2400, 4800, 9600,
19200, 38400, 57600, 115200, 230400, 460800, 500000, 576000 or 921600;
• format — asynchronous data format "<size><parity><stop>" (8N1, 7E1, 5O2, ...);
• fc — flow control:

• "h" — hardware (CRTSCTS);
• "s" — software (IXON|IXOFF);
• "rts" — use RTS signal for transfer(false) and check for echo, for pure RS-485.

• modTel — modem telephone, the field presence do switch transport to work with modem
mode.

• The state, in which the transport must be translated at boot: "To start".
• Time intervals of the interface in the format of string: "conn:character". Where:

• conn — waiting time of the connection i.e. response from the remote device.
• character — character time, in milliseconds. Used for control of the end of the frame.

Module <Serial> of subsystem “Transports” 400

Transport supports the ability to work as a modem. This mode is activated by the fifth parameter of the
address, and implies the phone call making at the number, specified in the fifth parameter, at the moment of
transport's start. After installation the connection with the remote modem all requests are sent to the station
behind the remote modem. Turning off the communication session at the transport's stop is made using the
activity timeout.

To configure the modem of the outgoing transport the special tab "Modem" is provided (Fig. 4).

Fig.4. "Modem" tab of the configuration of modem of outgoing serial interface.

With this dialog you can set the following properties of working with modem:
• Requests timeout of the modem in seconds.
• Lifetime of the connection in seconds. If during this time there will be no data transmission over
the transport the connection will be aborted.
• The time delay before initializing the modem in seconds.
• The time delay after initializing the modem in seconds.
• The first initialization string typically contains the reset command of the modem "ATZ".
• The second initialization string.
• The result string of the modem's initialization, usually "OK", with which the modem answers for
initializing and which must be expected.
• Dialing string to the remote modem, usually is "ATDT". When you dial the phone number is
appended to this prefix.
• The string result of the successful connection, typically is "CONNECT".
• The string result of the busy line, usually is "BUSY".
• The string result of the absence of the carrier in line, usually is "NO CARRIER".
• The string result of the lack of dial tone in the line, typically is "NO DIALTONE".
• The command hang up, is usually "+++ATH". This command is called whenever there is need to
break the connection.
• The string result of the hang up command, usually is "OK", with which the modem answers to
the command and which must be expected.

Module <Serial> of subsystem “Transports” 401

 3. Remarks
Communications via the serial interfaces have a number of features. The most important feature is the

criterion for the end of the message and the waiting time of this criterion. In some protocols, such a
criterion is a sign of the end or the specified message size. In other protocols, such a criterion is no data in
the input stream for a specified time, the character time. In both cases, the waiting time of criterion or
character is a crucial and strongly affects the overall exchange time. Consequently, the smaller this time, the
better. This is where the problem of hardware and its drivers latency happens.

To check the latency of communication channel and thus optimally to configure the waiting time,
character time, you can use the interface tab "Request" of outgoing transport. To do this you need to specify
a model request to the protocol, indicating 'Wait timeout', send a request and check its integrity. To obtain
the more representative result you should repeat the request a few times. If there is getting incomplete
answers, the character time should be increased, else it can be reduced.

In the embedded serial interface RS232/422/485 hardware you can achieve low latency, up to several
milliseconds. However, the latency of the high-loaded systems with multiple tasks with a priority of real-
time can be nondeterministic in connection with the execution of the events' service thread of the Linux
kernel in the low priority. To solve this problem you should install a high priority to these threads that can
be done with a script, placing it, for example, to /etc/rc.local:

#!/bin/sh
High priority set to kernel threads events for serial interfaces reaction rise
events=`ps -Ao pid,comm | sed -n '/[]*\([^]\)[]*events\/[0-9]/s//\1/p'`
for ie in $events; do

chrt -pr 21 $ie
done

On the external serial interfaces hardware, such as adapters USB->RS232/422/485, you may meet the
problems of high latency associated with the feature of hardware implementation or its driver. The solve
this problem you should study the configuration of the equipment or adjust the large waiting time, character
time!

Module <Serial> of subsystem “Transports” 402

Module <HTTP> of subsystem “Protocols”
Module: HTTP

Name: HTTP

Type: Protocol

Source: prot_HTTP.so

Version: 1.6.0

Author: Roman Savochenko

Translated: Maxim Lysenko

Description: Provides support for the HTTP protocol for WWW-based user interfaces.

License: GPL

Module of the transport protocol HTTP is designed to support the implementation of network protocol
HTTP (Hypertext Transfer Protocol) in the system OpenSCADA.

HTTP Protocol is used to transfer the WWW contents. For example, via HTTP the following types of
documents are transmitted: html, xhtml, png, java, and many others. Adding the HTTP support in
OpenSCADA system together with the Sockets transport allows to implement various user functions based
on the WWW interface. The module implements two main methods of the HTTP protocol: "GET" and
"POST". "HTTP" module provides control of the integrity of HTTP-queries and, jointly with "Sockets"
transport, allows to "collect" holistic requests of their fragments, as well as maintain the keeping of the
connection alive (Keep-Alive).

For flexible connection of the user interfaces to the module the modular mechanism within the module
HTTP is used. In the role of modules the modules of subsystem the "User interfaces" are used with the
additional information field "SubType" with the value of "WWW".

In the requests for the Web resources the URL(Universal Resource Locator) are commonly used, hence
the URL is passed as the main parameter via HTTP. The first element of the requested URL is used to
identify the module UI. For example URL: http://localhost:10002/WebCfg means — address to module
WebCfg on the host http://localhost:10002. In the case of an incorrect indication of the module ID, or when
you address without identifier of the module at all, HTTP module generates the dialogue of the information
on the input and with the choice of one of the available user interfaces. Example of a dialogue is shown in
Figure 1.

Module <HTTP> of subsystem “Protocols” 403

Fig.1. Dialog of the choice of WWW-interface module.

 1. Authentication
Module supports authentication in the system OpenSCADA while providing access to the WEB-

interface modules (Fig.2). Dialogue is formed in the language of XHTML 1.0 Transitional!

Fig.2. Authentication dialogue in the system OpenSCADA.

Module <HTTP> of subsystem “Protocols” 404

For ease of Web-based interface module provides the ability to automatically log on behalf of the
specified user. Configuring automatic login to make by the module settings page (Fig.3).

Fig.3. The module configuring page.

On the module settings you can specify the lifetime of the authentication, HTML-template of custom
interface and set up automatic login.

Automatic login is carried out by matching the address indicated in the column "Address", on behalf of
the user specified in the column "User".

In the HTML-template must specify the address of the file HTML/XHTML, which will be used for the
formation of internal interfaces. For example, to select the modules and the login page. From the template
required correct XHTML, allowing parse the file by XML-parser, and the presence of tags
"#####CONTEXT#####" at the location of the dynamic content. Resource template files, represented by
images, CSS and JavaScript files are searched from the directory in which the specified file location
template. If errors are found in the template will be used in a standard interface.

 2. The modules of user WEB-interface
Modules of the user interface (UI) designed to work with HTTP module, should indicate an information

field "SubType" with the value "WWW" and "Auth" field with the value "1" if the module requires an
authentication at login. For communication of HTTP module and UI modules an advanced communication
mechanism is used. This mechanism involves the export of interface functions. In this case the UI modules
must export the following function:

• void HttpGet(const string &url, string &page, const string &sender, vector<string> &vars,
const string &user); — GET method with the parameters:

url — address of the request;
page — page with the answer;
sender — address of the sender;

Module <HTTP> of subsystem “Protocols” 405

vars — request variables;
user — user of the system.

• void HttpPost(const string &url, string &page, const string &sender, vector<string> &vars,
const string &user); — POST method with the parameters:

url — address of the request;
page — page with the answer and with the contents of the body of the POST request;
sender — address of the sender;
vars — request variables;
user — user of the system.

Then, in the case of a HTTP GET request, the function HttpGet will be called, and in the case of the
POST request, the function HttpPost will be called in the appropriate UI module.

 3. Outgoing requests function's API
The outgoing function of API operate by HTTP-request's content which wrapped to XML-packages. The

request structure is:
<req Host="host" URI="uri">
 <prm id="pId">pVal</prm>
 <cnt name="cName" filename="cFileName">
 <prm id="cpId">cpVal</prm>
 cVal
 </cnt>
 reqVal
</req>

Where:
• req — request method, supported methods "GET" and "POST".
• host — http-server address into format [HostAddr]:[HostIp]. If that field have been passed then
used node address which set into address field of the transport.
• uri — resource address, file or direcory, at http-server.
• pId, pVal — identifier and value of addition http-parameters. You can set multiply http-
parameters by different prm tags set.
• cName, cFileName, cVal — name, file-name and value of content-element of POST-request. You
can set multiply content-elements by different cnt tags set.
• cpId, cpVal — identifier and value of addition content-parameters. You can set multiply content-
parameters by different prm tags set;
• reqVal — POST request's single content.

Request result's structure is:
<req Host="host" URI="uri" err="err" Protocol="prt" RezCod="rCod" RezStr="rStr">
 <prm id="pId">pVal</prm>
 respVal
</req>

Where:
• req — request method.
• host — http-server address.
• uri — resource address.
• err — the error wich appear in request time. For successed requests the field is empty.
• RezCod, RezStr — request result into view code and text.
• pId, pVal — identifier and value of addition http-parameters. Respond can set multiply http-
parameters by different prm tags set.
• respVal — respond's content.

Module <HTTP> of subsystem “Protocols” 406

Into example role we accord using the function into users procedures for GET and POST requests
making by language JavaLikeCalc.JavaScript:

//GET request
req = SYS.XMLNode("GET");
req.setAttr("URI","/");
SYS.Transport.Sockets.out_testHTTP.messIO(req,"HTTP");
test = req.text();

//POST request
req = SYS.XMLNode("POST");
req.setAttr("URI","/WebUser/FlowTec.txt");
cntNode = req.childAdd("cnt").setAttr("name","pole0").setAttr("filename","Object2
-k001-100309-17.txt");
cntNode.childAdd("prm").setAttr("id","Content-Type").setText("text/plain");
cntText = "Object2-k001\r\n";
cntText += "\r\n";
cntText += "v002\r\n";
cntText += " n1\r\n";
cntText += " 09.03.10 16 Polnyj 7155.25 216.0 32.000 17.5\r\n";
cntText += "v005\r\n";
cntText += " n1\r\n";
cntText += " 09.03.10 16 Polnyj 188.81 350.0 4.000 40.0\r\n";
cntText += "\r\n";
cntNode.setText(cntText);
SYS.Transport.Sockets.out_testHTTP.messIO(req,"HTTP");

Module <HTTP> of subsystem “Protocols” 407

Module <SelfSystem> of subsystem “Protocols”
Module: SelfSystem
Name: OpenSCADA system own protocol
Type: Protocol
Source: prot_SelfSystem.so
Version: 0.9.5
Author: Roman Savochenko
Translated: Maxim Lysenko
Description: OpenSCADA system own protocol, it supports the basic functions.
License: GPL

The module of the transport protocol SelfSystem is designed to reflect the interface management of
OpenSCADA system to the network, to provide an opportunity to the external systems to interact with the
OpenSCADA system, as well as for the interaction of the stations constructed on the basis of OpenSCADA
among themselves.

The first experience of using the functions of this module was the support of remote configuration of one
OpenSCADA station from another through the network, by means of the module of configuration QTCfg.

 1. The syntax of the protocol
The protocol is built on the mechanism of request-response. Requests and their structure are summarized

in Table 1.

Table 1 Structure of the request.
Requests
REQ: «SES_OPEN <user> <password>\n»
REZ OK: «REZ 0 <ses_id>\n»
REZ ERR: «REZ 1 Auth error. User or password error.\n»
The request for the opening of the session on behalf of the user <user> with the password <password>.
In case of success it will be received the session identifier, otherwise – the code and the error message.
REQ: «SES_CLOSE <ses_id>\n»
REZ: «REZ 0\n»
Closure of the session. The result is always successful.
REQ 1: «REQ <ses_id> <req_size> \n <control interface command>"
REQ 2: «REQDIR <user> <password> <req_size> \n <control interface command>"
REZ OK: «REZ 0 <rez_size> \n <control interface command result>"
REZ ERR: «REZ 1 Auth error. Session is not valid.\n»
REZ ERR: “REZ 2 <control interface err>"
The main requests: the session and the direct are implemented by sending the standard command of
OpenSCADA control interface to the field <control interface command>. As the result will it be received
an answer from the management interface <control interface command result> or one of the errors.
REQ: “ERR REQUEST”
REZ ERR: «REZ 3 Command format error.\n»
Any invalid request.

Protocol supports the package of traffic. Only the data of the management interface is to be packed
<control interface command> and <control interface command result>. The fact of the arrival of packaged
request or response is determined by the negative value of the size of the request <req_size> or response
<rez_size>.

Module <SelfSystem> of subsystem “Protocols” 408

http://wiki.oscada.org.ua/Doc/API?v=hpl
http://wiki.oscada.org.ua/HomePageEn/Doc/QTCfg?v=1dow

To control the parameters of the package the module provides the configuration form (Fig. 1).

Fig.1. The form of the configuration of the package parameters.

On this form, you can specify:
• the lifetime of the authentication session;
• level of compression of the protocol, ranging from 0 to 9 (0-disable compression-1-optimal in
performance and quality compression level);
• lower threshold for the compression using, turns off the compression of small requests.

 2.The internal structure of an outgoing protocol
The internal structure if formed by means of the tree of XML requests of thelanguage OpenSCADA

control interface with the reservation of the redundant additional service attributes of the protocol in the
root tag:

• rqDir — sign of the sending the message passing the procedure of the opening the session (0-open
session, 1-send immediately);

• rqUser — user;
• rqPass — password.

The result of the request is the tree of XML language of the management interface of OpenSCADA.

Module <SelfSystem> of subsystem “Protocols” 409

http://wiki.oscada.org.ua/Doc/API?v=hpl
http://wiki.oscada.org.ua/Doc/API?v=hpl

Module <UserProtocol> of subsystem “Protocols”
Module: UserProtocol
Name: User protocol
Type: Protocol
Source: prot_UserProtocol.so
Version: 0.6.2
Author: Roman Savochenko
Translated: Maxim Lysenko

Description:
Allows you to create your own user protocols on any OpenSCADA's
language.

License: GPL

Module UserProtocol of the transport protocol is made to provide the user with the possibility of creation
the implementations of different protocols by himself at one of the internal languages of OpenSCADA,
usually JavaLikeCalc, without necessity of low-level programming of OpenSCADA.

The main purpose of the module is to simplify the task of connecting to the OpenSCADA system
devices of data sources, that have limited distribution and/or provide access to their own data on a specific
protocol that is usually fairly simple to implement in the internal language of OpenSCADA. For
implementation of this the mechanism for the formation of the outgoing request protocol is provided.

In addition to the mechanism of the outgoing request protocol the mechanism for incoming request
protocol is provided, which allows OpenSCADA to process the requests for data get on specific protocols,
which simply can be implemented in the internal language of OpenSCADA.

The module provides the ability to create multiple implementations of different protocols in the object
"User protocol" (Fig. 1).

Fig.1. The main tab of the object "User protocol".

Module <UserProtocol> of subsystem “Protocols” 410

http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc?v=6tt

The main tab contains the basic settings of the user protocol:
• Section "Status" - contains properties that characterize the status of the protocol:

• Status - current status of the protocol.
• Enable - the protocol's status "Enabled".
• DB - DB that stores configuration.

• Section "Config" - directly contains the configuration fields:
• ID - information on the protocol's identifier.
• Name - specifies the name of the protocol.
• Description - brief description of the protocol and its purpose.
• To enable - indicates the status "Enable", in which to transfer the protocol at startup.

 1. Part of the protocol for incoming requests
Protocol of incoming requests is working in cooperation with the incoming transport and the separate

object "User Protocol" is set in the configuration field of transport protocol, together with the UserProtocol
module's name. In the future, all requests to the transport will be sent to the processing procedure of the
protocol's request (Fig. 2).

Fig.2. Tab of the processing procedures of the incoming requests.

Tab of the processing procedures of the incoming request contains the field for selecting the internal
programming language of OpenSCADA and the text entry field for the typing the processing procedure.

For the processing procedure the following exchange variables with incoming traffic are predetermined:
• rez - processing result (false-full request;true-not full request);
• request - request message;
• answer - answer message;
• sender - request sender.

Module <UserProtocol> of subsystem “Protocols” 411

The overall scenario of processing of the incoming requests:
• Request is formed by the remote station and through the network it gets on the transport of
OpenSCADA.
• OpenSCADA transport sends the request to the selected in the protocol's field UserProtocol
module and to the objects of the user's protocol in the form of the variable's "request" values - for
the block of the request and "sender" - for the sender address of the request.
• The execution of the the procedure of protocol of the incoming request is started, during which
the contents of the variable "request" is analyzed and the response in the variable "answer" is
formed. At the end of the procedure's execution the variable "rez" is formed, which indicates the
transport to the fact of reception of full request and the formation of the correct answer (false) or to
the necessity for the transport to expect for the remaining data (true).
• If the result of the processing procedure is the variable "rez" with the 'false' and the response in
the variable "answer" is not zero, then the transport sends the response and reset the accumulation of
"request".
• If the result of the processing procedure is the variable "rez" with 'true' then the transport
continues to expect for the data. When it receives the next portion of data they are added to the
variable "request" and this procedure is repeated.

As an example, consider the implementation of query processing of protocol DCON, for some queries to
a data source with the address "10":

//SYS.messDebug("TEST REQ: ",request);
//Test request for full
if(request.length < 4 || request[request.length-1] != "\r")
{

if(request.length > 10) request = "";
return true;

}
//Check for integrity of the request (CRC) and address
CRC = 0;
for(i = 0; i < (request.length-3); i++) CRC += request.charCodeAt(i);
if(CRC != request.slice(request.length-3,request.length-1).toInt(16) ||
request.slice(1,3).toInt(16) != 10) return false;
//Analysis of the request and response prepare
if(request.charCodeAt(0) == "#") answer = ">+05.123+04.153+07.234-02.356+10.000-
05.133+02.345+08.234";
else if(request.charCodeAt(0) == "@") answer = ">AB3C";
else answer = "?";
//Finish response
CRC = 0;
for(i=0; i < answer.length; i++) CRC += answer.charCodeAt(i);
answer += (CRC&0xFF).toString(16)+"\r";
//SYS.messDebug("TEST ANSV: "+answer.charCodeAt(0),answer);
return 0;

Module <UserProtocol> of subsystem “Protocols” 412

 2. Part of the protocol for outgoing requests
The protocol of outgoing requests is working in cooperation with the outgoing transport and with the

separate object of the "User Protocol". The source of the request through the protocol may be a function of
the system-wide API of the user programming of the outgoing transport int messIO(XMLNodeObj req,
string prt);, in the parameters of which it must be specified:

• req - request as an XML tree with the structure corresponding to the input format of the
implemented protocol;
• prt - the name of the "UserProtocol" module.

The request which is sent with the aforesaid way is directed to the processing procedure of the protocol's
request (Fig. 3) with the user protocol's ID which is specified in the attribute req.attr("ProtIt").

Fig.3. Tab of the processing procedures of the outgoing requests.

The tab of the processing procedure for outgoing requests includes the field to select the internal
programming language of OpenSCADA and text field for typing the processing procedure.

For the processing procedure the following exchange variables are predetermined:
• io - XML node of the exchange with the client, through which the protocol gets the requests and
into which it puts the result with the format implemented in the procedure;
• tr - The transport object is provided for the call the transport function string messIO(string mess,
real timeOut = 1000); "tr.messIO(req)".

The overall scenario of the formation if the outgoing request:
• Building of the XML-tree in accordance with the structure implemented by the protocol and
setting of the user protocol identifier in the attribute "ProtIt".
• Sending the request to transport through the protocol SYS.Transport["Modul"]
["OutTransp"].messIO(req,"UserProtocol");.

Module <UserProtocol> of subsystem “Protocols” 413

• Selection of the user interface in accordance with req.attr("ProtIt") and initialization of variables
of outgoing transport io - respectively to the first argument messIO() and tr - object of the
"OutTransp".
• Calling the procedure for execution which after the processing the "io" structure forms the direct
request to the transport tr.messIO(req);, result of which is processed and put back in io.

The essence of the allocation the protocol part of the code to the procedure of the user protocol is to
facilitate the interface of the client exchange for multiple use and assumes the formation of the structure of
XML-node of the exchange as the attributes of the addresses of remote stations, addresses of the read and
write variables and the values of the variables themselves. The entire work of direct coding of the request
and decoding of the response is assigned to procedure of the user protocol.

As an example, consider the implementation of the requests by protocol DCON, to the handler,
implemented in the previous section. Let's start with the implementation of the protocol part:

//Result request prepare
request = io.name().slice(0,1)+io.attr("addr").toInt().toString(16,2)+io.text();
CRC = 0;
for(i=0; i < request.length; i++) CRC += request.charCodeAt(i);
request += (CRC&0xFF).toString(16)+"\r";
//Send request
resp = tr.messIO(request);
while(resp[resp.length-1] != "\r")
{

tresp = tr.messIO("");
if(!tresp.length) break;
resp += tresp;

}
//Analysis response
if(resp.length < 4 || resp[resp.length-1] != "\r") { io.setAttr("err","10:Error or
no response."); return; }
//Check response to the integrity (CRC)
CRC = 0;
for(i = 0; i < (resp.length-3); i++) CRC += resp.charCodeAt(i);
if(CRC != resp.slice(resp.length-3,resp.length-1).toInt(16))
{ io.setAttr("err","11:CRC error."); return; }
if(resp[0] != ">") { io.setAttr("err","12:"+resp[0]+":DCON error."); return; }
//The result return
io.setAttr("err","");
io.setText(resp.slice(1,resp.length-3));

And the procedure is immediate dispatch DCON request, through the previous procedure protocol. This
procedure should be put in the necessary task or an intermediate function OpenSCADA, such as the
procedure of the controller DAQ.JavaLikeCalc:

//Request prepare
req = SYS.XMLNode("#").setAttr("ProtIt","DCON").setAttr("addr",10);
//Send request
SYS.Transport["Serial"]["out_TestDCON"].messIO(req,"UserProtocol");
if(!req.attr("err").length) SYS.messDebug("TEST REQ","RES: "+req.text());
//Second request prepare
req = SYS.XMLNode("@").setAttr("ProtIt","DCON").setAttr("addr",10);
//Send second request
SYS.Transport["Serial"]["out_TestDCON"].messIO(req,"UserProtocol");
if(!req.attr("err").length) SYS.messDebug("TEST REQ","RES: "+req.text());

Module <UserProtocol> of subsystem “Protocols” 414

http://wiki.oscada.org/HomePageEn/Doc/JavaLikeCalc#h867-13

The module <FLibComplex1> of the subsystem
“Specials”

Module: FLibComplex1
Name: Library of functions compatible with SCADA Complex1.
Тип: Specials
Source: spec_FLibComplex1.so
Version: 1.1.0
Author: Roman Savochenko
Translated: Maxim Lysenko

Description:
Provides the library of functions compatible with SCADA Complex1 of the firm SIC
“DIYA”.

License: GPL

Special module FLibComplex1 provides the OpenSCADA system with the static library of functions
compatible with SCADA Complex1 of firm SIC "DIYA". These functions are used in the SCADA system
Complex1 in the form of algoblocks to create inner-computings on the virtual controller. Provision of the
library of these functions lets to do the transfer of computational algorithms from the system Complex1.

To address the functions of the library you can use static call address "Special.FLibComplex1.{Func}
()" or dynamic "SYS.Special.FLibComplex1["{Func}"].call()", "SYS.Special.FLibComplex1.{Func}()".
Where {Func} — function identifier in the library.

Below is the description of each function of the library. For each function it was evaluated the execution
time. Measurements were made on the system with the following parameters: Athlon 64 3000 + (ALTLinux
4.0 (32bit)) by measuring the total execution time of the function when you call it 1000 times. Sampling
was carried out of the five calculations, rounded to integer. Time is in angle brackets and is measured in
microseconds.

 1. Alarm (alarm) <111>
Description: Set alarm sign in the case of going out of the variable for the specified boundary.

Formula:
out = if(val>max || val<min) true; else false;

 2. Condition '<' (cond_lt) <239>
Description: Operation of branching in accordance with the condition “<".

Formula:
out = if(in1<(in2_1*in2_2*in2_3*in2_4)) in3_1*in3_2*in3_3*in3_4;

 else in4_1*in4_2*in4_3*in4_4;

 3. Condition '>' (cond_gt) <240>
Description: Operation of branching in accordance with the condition “>".

Formula:
out = if(in1>(in2_1*in2_2*in2_3*in2_4)) in3_1*in3_2*in3_3*in3_4;

 else in4_1*in4_2*in4_3*in4_4;

The module <FLibComplex1> of the subsystem “Specials” 415

 4. Full condition (cond_full) <513>
Description: Full check of the conditions, including more, less and equal.

Formula:
out = if(in1<(in2_1*in2_2*in2_3*in2_4)) in3_1*in3_2*in3_3*in3_4;
else if(in1>(in4_1*in4_2*in4_3*in4_4) in5_1*in5_2*in5_3*in5_4;
else in6_1*in6_2*in6_3*in6_4;

 5. Digital block (digitBlock) <252>
Description: Function contains the control algorithm of digital signals acquisition for valves and pumps

that contain: signs of “Open”, “Close” and the command “Open”, “Close”, “Stop”. Supports work with
pulse commands, i.e. can read the signal through the specified period of time.

Parameters:
ID Parameter Type Mode

cmdOpen Command “Open” Bool Out
cmdClose Command “Close” Bool Out
cmdStop Command “Stop” Bool Out
stOpen Position “Opened” Bool In
stClose Position “Closed” Bool In
tCmd Command hold time (s) Integer In
frq Frequency of calculation (milliseconds) Integer In

 6. Division (div) <526>
Description: Makes division of the set of variables.

Formula:
out = (in1_1*in1_2*in1_3*in1_4*in1_5 +

in2_1*in2_2*in2_3*in2_4*in2_5 + in3)
/(in4_1*in4_2*in4_3*in4_4*in4_5 +

in5_1*in5_2*in5_3*in5_4*in5_5 + in6);

 7. Exponent (exp) <476>
Description: Calculating the exponent under the group of variables.

Formula:
out = exp (in1_1*in1_2*in1_3*in1_4*in1_5 +

(in2_1*in2_2*in2_3*in2_4*in2_5+in3) /
(in4_1*in4_2*in4_3*in4_4*in4_5+in5))

 8. Flow (flow) <235>
Description: Calculation of the gas flow.

Formula:
f = K1*((K3+K4*x)^K2);

 9. Iterator (increment) <181>
Description: Iterative calculation with the increment specifying. Gain ratio for different directions is

different.

Formula:
out = if(in1 > in2) in2 + in3*(in1-in2);

 else in2 - in4*(in2-in1);

The module <FLibComplex1> of the subsystem “Specials” 416

 10. Lag (lag) <121>
Description:Variation of the variable lag. Practice, this is the filter without reference to time.

Formula:
y = y - Klag*(y - x);

 11. Simple multiplication(mult) <259>
Description: Simple multiplication with division.

Formula:
out = (in1_1*in1_2*in1_3*in1_4*in1_5*in1_6)/

 (in2_1*in2_2*in2_3*in2_4);

 12. Multiplication + Division(multDiv) <468>
Description: Branched multiplication + division.

Formula:
out = in1_1*in1_2*in1_3*in1_4*in1_5 *

(in2_1*in2_2*in2_3*in2_4*in2_5 +
(in3_1*in3_2*in3_3*in3_4*in3_5) /
(in4_1*in4_2*in4_3*in4_4*in4_5));

 13. PID regulator (pid) <745>
Description: Proportional-integral-differential regulator.

Parameters:
ID Parameter Type Mode By defaults

var Variable Real In 0
sp Set point Real Out 0
max Maximum of scale Real In 100
min Minimum of scale Real In 0
manIn Manual input (%) Real In 0
out Out (%) Real Return 0
auto Auto Bool In 0
casc Cascade Bool In 0
Kp Kp Real In 1
Ti Ti (ms) Integer In 1000
Kd Kd Real In 1
Td Td (ms) Integer In 0
Tzd Td lag (ms) Integer In 0
Hup Upper limit of the out (%) Real In 100
Hdwn Lower limit of the out (%) Real In 0
Zi Insensitivity (%) Real In 1
followSp Follow sp from var on manual Bool In 1
K1 Koef. of the input 1 Real In 0
in1 Input 1 Real In 0
K2 Koef. of the input 2 Real In 0
in2 Input 2 Real In 0
K3 Koef. of the input 3 Real In 0
in3 Input 3 Real In 0

The module <FLibComplex1> of the subsystem “Specials” 417

ID Parameter Type Mode By defaults
K4 Koef. of the input 4 Real In 0
in4 Input 4 Real In 0
f_frq Frequency of calculation (Hz) Real In 1

Structure:

 14. Power (pow) <564>
Description: Raising to the power

Formula:
out = (in1_1*in1_2*in1_3*in1_4*in1_5) ^

(in2_1*in2_2*in2_3*in2_4*in2_5 +
(in3_1*in3_2*in3_3*in3_4*in3_5) /
(in4_1*in4_2*in4_3*in4_4*in4_5));

 15. Selection (select) <156>
Description: Selection of the one from four options.

Formula:
out = if(sel = 1) in1_1*in1_2*in1_3*in1_4;

 if(sel = 2) in2_1*in2_2*in2_3*in2_4;
 if(sel = 3) in3_1*in3_2*in3_3*in3_4;
 if(sel = 4) in4_1*in4_2*in4_3*in4_4;

 16. Simple integrator (sum) <404>
Description: A simple summation with the multiplication.

Formula:
out = in1_1*in1_2+in2_1*in2_2 + in3_1*in3_2+in4_1*in4_2 +

 in5_1*in5_2+in6_1*in6_2 + in7_1*in7_2+in8_1*in8_2;

 17. Sum with the division (sum_div) <518>
Description: The summation the set of values with the division.

Formula:
out = in1_1*in1_2*(in1_3+in1_4/in1_5) +

 in2_1*in2_2*(in2_3+in2_4/in2_5) +
 in3_1*in3_2*(in3_3+in3_4/in3_5) +
 in4_1*in4_2*(in4_3+in4_4/in4_5);

The module <FLibComplex1> of the subsystem “Specials” 418

 18. Sum with the multiplication. (sum_mult) <483>
Description: The summation the set of values with the multiplication.

Formula:
out = in1_1*in1_2*(in1_3*in1_4+in1_5) +

 in2_1*in2_2*(in2_3*in2_4+in2_5) +
 in3_1*in3_2*(in3_3*in3_4+in3_5) +
 in4_1*in4_2*(in4_3*in4_4+in4_5);

 19. User programming API
Some objects of the module provides functions for user's programming.

The object "Functions library" (SYS.Special.FLibComplex1)
• ElTp {funcID}(ElTp prm1, ...) — call the library function {funcID}. Return result of the called
function.

The object "User function" (SYS.Special.FLibComplex1["funcID"])
• ElTp call(ElTp prm1, ...) — call the function with parameters <prm{N}>.
Return result of the called function.

The module <FLibComplex1> of the subsystem “Specials” 419

The module <FLibMath> of the subsystem
“Specials” <FLibMath>

Module: FLibMath
Name: The library of standard mathematical functions.
Type: Specials
Source: spec_FLibMath.so
Version: 0.6.0
Author: Roman Savochenko
Translated: Maxim Lysenko
Description: Provides the library of standard mathematical functions.
License: GPL

Special FLibMath module provides the library of standard mathematical functions into the system.

To address the functions of the library you can use static call address "Special.FLibMath.{Func}()" or
dynamic "SYS.Special.FLibMath["{Func}"].call()", "SYS.Special.FLibMath.{Func}()". Where {Func}
— function identifier in the library.

 1. Functions
Table 1 provides a description of each function of the library. For each function the evaluation time of

execution is measured. The measurement was made on a system with the following parameters: Athlon 64
3000 + (ALTLinux 3.0 (32bit)), by measuring the total time of execution of the function, while calling it
1000 times.

Table 1: The functions of the library of standard mathematical functions

Id Name Description
Time (micro-

seconds)
abs Module Math. function – the number module. 81
acos Anti-cosine Math. function – anti-cosine. 149
asin Anti-sine Math. function – anti-sine. 140
atan Anti-tangent Math. function – anti-tangent. 109
ceil Rounding up to a larger Math. function – rounding up to a larger integer. 96
cos Сosine Math. function – cosine. 93
cosh Hyperbolic cosine Math. function – hyperbolic cosine. 121
exp Exponent Math. function – exponent. 145
floor Rounding to the lower Math. function – rounding to the lower integer 95
if If Condition Condition function – “If”. 92
lg Common logarithm Math. function – common logarithm. 168
ln Natural logarithm Math. function – natural logarithm. 185
pow Power Math. function – involution. 157
rand Random number Math. function – random number generator. 147
sin Sine Math. function – sine. 127
sinh Hyperbolic sine Math. function – hyperbolic sine. 199
sqrt The square root Math. function – the square root. 94
tan Tangent Math. function – tangent. 153
tanh Hyperbolic tangent Math. function – hyperbolic tangent. 177

The module <FLibMath> of the subsystem “Specials” <FLibMath> 420

 2. User programming API
Some objects of the module provides functions for user's programming.

The object "Functions library" (SYS.Special.FLibMath)
• ElTp {funcID}(ElTp prm1, ...) — call the library function {funcID}. Return result of the called
function.

The object "User function" (SYS.Special.FLibMath["funcID"])
• ElTp call(ElTp prm1, ...) — call the function with parameters <prm{N}>. Return result of the
called function.

The module <FLibMath> of the subsystem “Specials” <FLibMath> 421

The module <FLibSYS> of the subsystem
“Specials”

Module: FLibSYS
Name: Library of system API functions.
Type: Specials
Source: spec_FLibSYS.so
Version: 1.0.0
Author: Roman Savochenko
Translated: Maxim Lysenko
Description: Provides the library of system API of user programming area.
License: GPL

Special module FLibSYS provides static library of functions for working with the OpenSCADA system
at the level of its system API. These functions can be used in an user programming area of OpenSCADA
system for the organization of not ordinary interaction algorithms.

To address the functions of the library you can use static call address "Special.FLibSYS.{Func}()" or
dynamic "SYS.Special.FLibSYS["{Func}"].call()", "SYS.Special.FLibSYS.{Func}()". Where {Func} —
function identifier in the library.

Below is the description of each function of the library. For each function it was evaluated the execution
time. Measurements were made on the system with the following parameters: Athlon 64 3000 + (ALTLinux
4.0 (32bit)) by measuring the total execution time of the function when you call it 1000 times. Sampling
was carried out of the five calculations, rounded to integer. Time is in angle brackets and is measured in
microseconds.

 1. System-wide functions

 1.1. Calling the console commands and operating system utilities (sysCall)

Description: Call the console commands of the OS. The function offers great opportunities to the
OpenSCADA user by calling any system software, utilities and scripts, as well as getting the access to the
huge volume of system data by means of them. For example the command “ls-l” returns the detailed
contents of the working directory.

Parameters:
ID Name Type Mode By defaults

rez Result String Return
com Command String In

Example:
using Special.FLibSYS;
test=sysCall("ls -l");
messPut("Example",0,"Example: "+test);

The module <FLibSYS> of the subsystem “Specials” 422

 1.2. SQL query (dbReqSQL)

Description: Formation of the SQL-query to DB.

Parameters:
ID Name Type Mode By defaults

rez Result Object(Array) Return
addr DB address String In
req SQL-query String In

 1.3. XML node (xmlNode)

Description: Creation of the XML node object.

Parameters:
ID Name Type Mode By defaults

rez Result Object(XMLNodeObj) Return
name Name String In

Example:
using Special.FLibSYS;
//Creating the "get" object of the XML node.
Req = xmlNode("get");
//Creating the "get" object of the XML node with creating attributes.
//sub_DAQ/mod_ModBus/cntr_1/prm_1 – The path in accord of project structure.
Req = xmlNode("get").setAttr("path","/sub_DAQ/mod_ModBus/cntr_1/prm_1/%2fprm%2fst
%2fen");

 1.4. Request of the management interface (xmlCntrReq)

Description: Request of the management interface to the system via XML. The usual request is written
in the form <get path="/OPat/%2felem"/>. When we indicate the station the request to the external station
is made.

Parameters:
ID Name Type Mode By defaults

rez Result String Return
req Request Object(XMLNodeObj) Out
stat Station String In

Example:
using Special.FLibSYS;
//Geting status "Off/On" of the parameter "1" of the controller "1"
//of the module "ModBus".
//sub_DAQ/mod_ModBus/cntr_1/prm_1 - The path in accord of project structure.
req = xmlNode("get").setAttr("path","/sub_DAQ/mod_ModBus/cntr_1/prm_1/%2fprm
%2fst%2fen");
rez = xmlCntrReq(req);
messPut("test",0,"Example: "+req.text());

//Setting status "On" of the parameter "1" of the controller "1"
//of the module "ModBus".
req = xmlNode("set").setAttr("path","/sub_DAQ/mod_ModBus/cntr_1/prm_1/%2fprm
%2fst%2fen").setText(1);
rez = xmlCntrReq(req);

//Setting status "Off of the parameter "1" of the controller "1"
//of the module "ModBus".

The module <FLibSYS> of the subsystem “Specials” 423

req = xmlNode("set").setAttr("path","/sub_DAQ/mod_ModBus/cntr_1/prm_1/%2fprm
%2fst%2fen").setText(0);
rez = xmlCntrReq(req);

 1.5. Values archive (vArh)

Description: Getting the object of the values archive (VArchObj) by connecting to the archive using its
address.

Parameters:
ID Name Type Mode By defaults

rez Result Object(VArchObj) Return

name
Name and address to the attribute of the parameter with
the archive or directly to the archive of values. String In

VArchObj object

Functions:
• begin(usec, archivator) — Getting the start time of the archive through the return of seconds
and microseconds <usec> for the archivator <archivator>.
• end(usec, archivator) — Getting the end time of the archive through the return of seconds and
microseconds <usec> for the archivator <archivator>.
• period(usec, archivator) — Getting the periodicity of the archive through the return of seconds
and microseconds <usec> for the archivator <archivator>.
• get(sec, usec, upOrd, archivator) – Getting the value from the archive at the time
<sec>:<usec> linked to the top <upOrd> for the archivator <archivator>. Real time of the value
obtained is set in <sec>:<usec>.
• set(val, sec, usec) — Writing of the value <val> in the archive buffer for the time
<sec>:<usec>.
• copy(src, begSec, begUSec, endSec, endUSec, archivator) — Copying of the part of the source
archive <src> or its buffer in the current beginning from <begSec>:<begUSec> and ending with
<endSec>:<endUSec> for the archivator <archivator>.
• FFT(tm, size, archivator, tm_usec) -- Performs the Fast Fourier Transformation using the FFT
algorithm. Returns an array of amplitudes of the frequencies for archive's values window for begin
time <tm>:<tm_usec> (seconds:microseconds), depth to history <size> (seconds) and for
archivator <archivator>.

Example:
using Special.FLibSYS;
val = vArh(strPath2Sep(addr)).get(time,uTime,0,archtor);
return val.isEval() ? "Empty" : real2str(val,prec);

 1.6. Buffer of the values archive (vArhBuf)

Description: Getting the object of the buffer of the values archive (VArchObj) to perform the
intermediate operations on frames of data.

Parameters:
ID Parameter Type Mode By defaults

rez Result Object(VArchObj) Return

tp Type of the values of the archive (0-Boolean, 1-Integer, 4-
Real, 5-String)

Integer In 1

sz Maximum buffer size Integer In 100
per periodicity of buffer (in microseconds) Integer In 1000000
hgrd Mode “Hard time grid” Boolean In 0
hres Mode «High time resolution (microseconds)" Boolean In 0

The module <FLibSYS> of the subsystem “Specials” 424

 2. Functions for the astronomical time processing

 2.1. Time string (tmFStr) <3047>

Description: Converts an absolute time in the string of the required format. Recording of the format
corresponds to the POSIX-function strftime.

Parameters:
ID Parameter Type Mode By defaults

val Full date string String Return
sec Seconds Integer In 0
form Format String In %Y-%m-%d %H:%M:%S

Example:
using Special.FLibSYS;
test=tmFStr(SYS.time(),"%d %m %Y");
messPut("Example",0,"tmFStr(): "+test);

 2.2. Full Date (tmDate) <973>

Description: Returns the full date in seconds, minutes, hours, etc., based on the absolute time in seconds
from the epoch of 1/1/1970.

Parameters:
ID Parameter Type Mode By defaults

fullsec Full seconds Integer In 0
sec Seconds Integer Out 0
min Minutes Integer Out 0
hour Hours Integer Out 0
mday Day of the month Integer Out 0
month Month Integer Out 0
year Year Integer Out 0
wday Day of the week Integer Out 0
yday Day of the year Integer Out 0
isdst Daylight saving time Integer Out 0

Example:
using Special.FLibSYS;
curMin=curHour=curDay=curMonth=curYear=0;
tmDate(tmTime(),0,curMin,curHour,curDay,curMonth,curYear);
messPut("test",0,"Current minute: "+curMin);
messPut("test",0,"Current hour: "+curHour);
messPut("test",0,"Current day: "+curDay);
messPut("test",0,"Current month: "+curMonth);
messPut("test",0,"Current Year: "+curYear);

 2.3. Absolute time (tmTime) <220>

Description: Returns the absolute time in seconds from the epoch and in microseconds, if <usec> is
installed in a non-negative value.

Parameters:
ID Parameter Type Mode By defaults

sec Seconds Integer Return 0
usec Microseconds Integer Out -1

The module <FLibSYS> of the subsystem “Specials” 425

 2.4. Conversion the time from the symbolic representation to the time in seconds from
the epoch of 1/1/1970 (tmStrPTime) <2600>

Description: Returns the time in seconds from the epoch of 1/1/1970, based on the string record of time,
in accordance with the specified template. For example, template "%Y-%m-%d %H:%M:%S" corresponds
the time «2006–08–08 11:21:55». Description of the format of the template can be obtained from the
documentation on POSIX-function “strptime”.

Parameters:
ID Parameter Type Mode By defaults

sec Seconds Integer Return 0
str Date string String In
form Date record format String In %Y-%m-%d %H:%M:%S

Example:
using Special.FLibSYS;
curMin=curHour=curDay=curMonth=curYear=0;
tmDate(tmTime(),0,curMin,curHour,curDay,curMonth,curYear);
test = tmStrPTime(""+curYear+"-"+(curMonth+1)+"-"+curDay+" 9:0:0","%Y-%m-%d %H:
%M:%S");
messPut("Example",0,"tmStrPTime(): "+test);

 2.5. Planning of the time in the Cron format (tmCron)

Description: Returns the time planned in the format of the Cron standard beginning from the base time
of from the current time, if the base is not specified.

Parameters:
ID Parameter Type Mode By defaults

res Result Integer Return 0
str Record in the Cron standard String In * * * * *
base Base time Integer In 0

 3. Functions of the messages processing

 3.1. Messages request (messGet)

Description: Request of the system messages.

Parameters:
ID Parameter Type Mode By defaults

rez Result Object(Array) Return
btm Start time Integer In
etm End time Integer In
cat Category of the message String In
lev Level of the message Integer In
arch Archivator String In

The module <FLibSYS> of the subsystem “Specials” 426

 3.2. Generation of the message (messPut)

Description: Formation of the system message.

Parameters:
ID Parameter Type Mode By defaults

cat Category of the message String In
lev Level of the message Integer In
mess Text of the message String In

Example:
rnd_sq_gr11_lineClr="red";
Special.FLibSYS.messPut("Example",1,"Event: "+rnd_sq_gr12_leniClr);

 4. Functions of the strings processing

 4.1. Getting the size of the string (strSize) <114>

Descroption: It is used to get the size.

Parameters:
ID Parameter Type Mode By defaults
rez Result Integer Return
str String String In

Example:
Special.FLibSYS.messPut("Example",1,"ReturnString: "+strSize("Example"));

 4.2. Getting the part of the string (strSubstr) <413>

Description: It is used to det the part of the string.

Parameters:
ID Parameter Type Mode By defaults

rez Result String Return
str String String In
pos Position Integer In 0
n Quantity Integer In -1

Example:
using Special.FLibSYS;
test=strSubstr("Example", 0, strSize("Example")-1);
messPut("Example",1,"ReturnString: "+test);

 4.3. Insert of the on string to the another (strInsert) <1200>

Description: It is used to insert of the on string to the another.

Parameters:
ID Parameter Type Mode By defaults

str String String Out
pos Position Integer In 0
ins Inserting string String In

The module <FLibSYS> of the subsystem “Specials” 427

 4.4. Change the part of the string with the another one (strReplace) <531>

Description: It is used to change the part of the string with the another one.

Parameters:
ID Parameter Type Mode By defaults

str String String Out
pos Позиция Integer In 0
n Quantity Integer In -1
repl Changing string String In

 4.5. Parsing the string on separator (strParse) <537>

Description: It is used to parse the string on separator.

Parameters:
ID Parameter Type Mode By defaults

rez Result String Return
str String String In
lev Level Integer In
sep Separator String In "."
off Offset Integer Out

Example:
using Special.FLibSYS;
ExapleString="Example:123";
test=strParse(ExapleString,1,":");
messPut("Example",0,"strParse(): "+test);

 4.6. Path parsing (strParsePath) <300>

Description: It is used for the parsing the path on the elements.

Parameters:
ID Parameter Type Mode By defaults

rez Result String Return
path Path String In
lev Level Integer In
off Offset Integer Out

Example:
using Special.FLibSYS;
test=strParsePath(path,0,"/");
messPut("Example",1,"strParsePath(): "+test);

 4.7. Path to the string with the separator (strPath2Sep)

Description: It is used to convert the path to the string with the separator.

Parameters:
ID Parameter Type Mode By defaults

rez Result String Return
src Source String In
sep Separator String In "."

Example:
//Converting value "/ses_AGLKS/pg_so" of the attribute "path"

The module <FLibSYS> of the subsystem “Specials” 428

//into value "ses_AGLKS.pg_so"
using Special.FLibSYS;
test = strPath2Sep(path);
messPut("Example",0,"path: "+path);
messPut("Example",0,"strPath2Sep(): "+test);

 4.8. Coding of the string to HTML (strEnc2HTML)

Description: It is used to code the string for using in the HTML source.

Parameters:
ID Parameter Type Mode By defaults
rez Result String Return
src Source String In

 4.9. Encode text to bin (strEnc2Bin)

Description: Use for encode text to bin, from format <00 A0 FA DE>.

Parameters:
ID Parameter Type Mode By defaults
rez Result String Return
src Source String In

 4.10. Decode text from bin (strDec4Bin)

Description: Use for decode text from bin to format <00 A0 FA DE>.

Parameters:
ID Parameter Type Mode By defaults
rez Result String Return
src Source String In

 4.11. Convert real to string (real2str)

Description: It is used to convert real to string.

Parameters:
ID Parameter Type Mode By defaults
rez Result String Return
val Value Real In
prc Precision Integer In 4
tp Type String In “f”

 4.12. Convert integer to string (int2str)

Description: It is used to convert integer to string.

Parameters:
ID Parameter Type Mode By defaults

rez Result String Return
val Value Integer In
base Base, supported: 8, 10, 16 Integer In 10

The module <FLibSYS> of the subsystem “Specials” 429

 4.13. Convert the string to real (str2real)

Description: It is used to convert string to real.

Parameters:
ID Parameter Type Mode By defaults
rez Result Real Return
val Value String In

 4.14. Convert the to integer (str2int)

Description: It is used to convert string to integer.

Parameters:
ID Parameter Type Mode By defaults

rez Result Integer Return
val Value String In
base Base Integer In 0

 5. Functions for the real processing

 5.1. Splitting the float to the words (floatSplitWord) <56>

Description: Splitting the float (4 bites) to the words (2 bites).

Parameters:
ID Parameter Type Mode By defaults

val Value Real In
w1 Word 1 Integer Out
w2 Word 2 Integer Out

 5.2. Merging the float from words (floatMergeWord) <70>

Description: Merging the float (4 bites) from words (2 bites).

Parameters:
ID Parameter Type Mode By defaults

rez Result Real Return
w1 Word 1 Integer In
w2 Word 2 Integer In

 6. User programming API
Some objects of the module provides functions for user's programming.

The object "Functions library" (SYS.Special.FLibMath)
• ElTp {funcID}(ElTp prm1, ...) — call the library function {funcID}. Return result of the called
function.

The object "User function" (SYS.Special.FLibMath["funcID"])
• ElTp call(ElTp prm1, ...) — call the function with parameters <prm{N}>. Return result of the
called function.

The module <FLibSYS> of the subsystem “Specials” 430

The module <SystemTests> of the subsystem
"Specials"

Module: SystemTests
Name: OpenSCADA system tests.
Type: Specials
Source: spec_SystemTests.so
Version: 1.5.1
Author: Roman Savochenko
Translated: Maxim Lysenko
Description: Provides the group of test to the OpenSCADA system.
License: GPL

Special module SystemTests contains a set of tests designed to test various subsystems and components
of the OpenSCADA system. Tests carried out in the form of user API functions. Hence the tests can be run
as a one-time, in the "Execute" page of the function's object and from the procedures of the user as well,
passing them the necessary arguments.

To address the functions of the library you can use static call address "Special.FLibComplex1.{Func}
()" or dynamic "SYS.Special.FLibComplex1["{Func}"].call()", "SYS.Special.FLibComplex1.{Func}()".
Where {Func} — function identifier in the library.

In addition to the usual mechanisms of user API execution an autonomous mechanism is provided. This
mechanism is represented by the separate task, performed with the period of one second, which calls the
functions of tests in accordance with the settings in the configuration file.

The configuration fields of the tests are placed in the section of the modulus SystemTests of subsystem
"Special". The format of the configuration fields is: <prm id="Test Id" on="1" per="10" /> Where:

• id - test ID;
• on - sign "Test is enabled";
• per - repetition period of the test (seconds).

In addition to the basic attributes the reflection of the input parameters of tests' functions on the same
name attributes of tag "prm" is made. For example, the attribute "name" of function "Param", you can
specify in the tag "prm".

It is allowed to indicate the set of tags "prm" for the same or different tests with the same or different
parameters, thus indicating the separate test execution with the specified parameters. Here is an example of
description of all available tests:

<?xml version="1.0" encoding="UTF-8" ?>
<OpenSCADA>
 <station id="DemoStation">
 <node id="sub_Special">
 <node id="mod_SystemTests">
 <prm id="Param" on="0" per="5" name="LogicLev.experiment.F3"/>
 <prm id="XML" on="0" per="10" file="/etc/oscada.xml"/>
 <prm id="Mess" on="0" per="10" categ="" arhtor="DBArch.test3"

depth="10"/>
 <prm id="SOAttach" on="0" per="20"

name="../../lib/openscada/daq_LogicLev.so" mode="0"
full="1"/>

 <prm id="Val" on="0" per="1" name="LogicLev.experiment.F3.var"
arch_len="5" arch_per="1000000"/>

 <prm id="Val" on="0" per="1" name="System.AutoDA.CPULoad.load"
arch_len="10" arch_per="1000000"/>

The module <SystemTests> of the subsystem "Specials" 431

 <prm id="DB" on="0" per="10" type="MySQL"
addr="server.diya.org;roman;123456;oscadaTest" table="test"
size="1000"/>

 <prm id="DB" on="0" per="10" type="DBF" addr="./DATA/DBF"
table="test.dbf" size="1000"/>

 <prm id="DB" on="0" per="10" type="SQLite" addr="./DATA/test.db"
table="test" size="1000"/>

 <prm id="DB" on="0" per="10" type="FireBird"
addr="server.diya.org:/var/tmp/test.fdb;roman;123456"
table="test" size="1000"/>

 <prm id="TrOut" on="0" per="1" addr="TCP:127.0.0.1:10001"
type="Sockets" req="time"/>

 <prm id="TrOut" on="0" per="1" addr="UDP:127.0.0.1:10001"
type="Sockets" req="time"/>

 <prm id="TrOut" on="0" per="1" addr="UNIX:./oscada" type="Sockets"
req="time"/>

 <prm id="TrOut" on="0" per="1" addr="UDP:127.0.0.1:daytime"
type="Sockets" req="time"/>

 <prm id="SysContrLang" on="0" per="10"
path="/Archive/FSArch/mess_StatErrors/%2fprm%2fst"/>

 <prm id="ValBuf" on="0" per="5"/>
 <prm id="Archive" on="0" per="30" arch="test1" period="1000000"/>
 <prm id="Base64Code" on="0" per="10"/>
 </node>
 </node>
 </station>
</OpenSCADA>

 1. Parameter (Param)
Description: Test of the DAQ parameters. Reads the attributes and configuration fields of the parameter.

Parameters:
ID Name Type Mode By defaults

rez Result String Return
name Address of the DAQ parameter String Input System.AutoDA.CPULoad

 2. XML parsing (XML)
Description: Test of the XML file parsing. Parses and displays the structure of the file.

Parameters:
ID Name Type Mode By defaults
rez Result String Return
file XML file String Input

 3. Messages (Mess)
Description: Test of the messages archive. Periodically reads new messages from the archive for the

specified archiver.

Parameters:
ID Name Type Mode By defaults

rez Result String Return
arhtor Archiver String Input FSArch.StatErrors
categ The template of the messages category String Input
depth Message's depth (s) Integer Input 10

The module <SystemTests> of the subsystem "Specials" 432

 4. SO attaching (SOAttach)
Description: Test connection/disconnection of the modules.

Parameters:
ID Name Type Mode By defaults

rez Result String Return
name Path to the module String Input
mode Mode (1-connect;-1-disconnect;0-change) Integer Input 0
full Full connection(when start) Bool Input 1

 5. Attribute of the parameter (Val)
Description: Test the attribute values of the parameter. Performs periodic polling of the last value of the

specified attribute, as well as a survey archive to the specified depth.

Parameters:
ID Name Type Mode By defaults

rez Result String Return
name Path to the attribute of the parameter String Input System.AutoDA.CPULoad.load
arch_len The depth of the query to the values' archive (s) Integer Input 10
arch_per Period of query to the values' archive (mcs) Integer Input 1000000

 6. DB test (DB)
Description: Complete database test. Includes:

• creating/opening of the DB;
• creating/opening of the table;
• creation of set of records (rows) of the predetermined structure;
• modification of the set of records;
• receiving and verifying the values of the set of records;
• modifying the structure of records and table;
• delete of the records;
• closing/deleting of the table;
• closing/deleting of the database.

Parameters:
ID Name Type Mode By defaults

rez Result String Return
type DB type String Input SQLite
addr DB address String Input ./DATA/test.db
table DB table String Input test
size Number of records Integer Input 1000

The module <SystemTests> of the subsystem "Specials" 433

 7. Transport (TrOut)
Description: Test of the output and/or input transports. Performs testing of the output transport by

sending the request to the specified input transport.

Parameters:
ID Name Type Mode By defaults

rez Result String Return
addr Address String Input TCP:127.0.0.1:10001
type Transport's module String Input Sockets
req Query text String Input

 8. Control system language (SysContrLang)
Description: Test of the control system language. Performs the query of the language elements through

the full path. Full path to the element of language is of the form of system control </Archive/%2fbd
%2fm_per>. Full path consists of two sub-paths. The first one </d_Archive/> is the path to the node of the
control tree. The second one </bd/m_per> is the path to a particular element of the node.

Parameters:
ID Name Type Mode By defaults

rez Result String Return
path Path to the element of language String Input /Archive/BaseArh/mess_StatErrors/%2fprm%2fst

 9. Values buffer (ValBuf)
Description: Tests of the values' buffer. Contains 13 tests of the all aspects of the values' buffer

(subsystem "Archives").

Parameters:
ID Name Type Mode By defaults
rez Result String Return

 10. Values archive (Archive)
Description: Tests of the placing of values in the archive. Contains 7 (8) tests of the values archiver to

verify the correctness of the functioning of a coherent mechanism for packaging.

Parameters:
ID Name Type Mode By defaults

rez Result String Return
arch Values archive String Input
period Values period (mcs) Integer Input 1000000

 11. Base64 code (Base64Code)
Description: Tests of the Mime Base64 encoding algorithm.

Parameters:
ID Name Type Mode By defaults
rez Result String Return

The module <SystemTests> of the subsystem "Specials" 434

The module of subsystems “User Interfaces”
<QTStarter>

Module: QTStarter
Name: QT GUI starter
Type: User Interfaces
Source: ui_QTStarter.so
Version: 1.7.0
Author: Roman Savochenko
Translated: Maxim Lysenko

Description:
Provides the QT GUI starter. QT-starter is the only and compulsory component for all GUI
modules based on the QT library.

License: GPL

The module <QTStarter> provides the system OpenSCADA with the starter of QT GUI modules. A
separate module of running the QT GUI modules is needed because of the need for single-flow execution of
all components and centralized initialization of the main object of the QT-library — QApplication.

To run a QT GUI modules advanced interface of callback of functions of modules is used. This interface
involves exporting of functions by the external modules. In our case, QT GUI modules must export the
following functions:

• QIcon icon(); — Sends an object of icon of the called module.
• QMainWindow *openWindow(); — Creates an object of the main window of the QT GUI
module, and passes it to the starter. It can return NULL in the case of the failure to create a new
window.

For identification QT GUI module must identify the information item of the module "SubType" as "QT".
Based on this feature "Starter" works with it.

After receiving the object of the main window "Starter" adds its own control panel and menu item in the
window and runs it. Starter control panel contains icons to call all the available QT GUI modules. To
except the addition of the control panel or the menu item, the module, which contains the window, can
specify the properties of "QTStarterToolDis" or "QTStarterMenuDis" respectively.

For the specifying QT GUI modules that run at startup, the starter module contains the configuration
field StartMod. In this field the identifiers of running modules are recorded via ';'. StartMod configuration
field can be described in the configuration file, as well as in the system database table through dialog of
configuration of the module (Fig. 1).

The module of subsystems “User Interfaces” <QTStarter> 435

Fig.1. The module configuration page.

In the case of closing the windows of all QT GUI modules "Starter" creates a dialog box that offers to
choose the available QT GUI modules, or shut down the system OpenSCADA. The view dialog box is
given in the Figure 2.

Fig.2. The dialog window of the "Starter".

The module of subsystems “User Interfaces” <QTStarter> 436

The module <QTCfg> of subsystems “User
Interfaces”

Module: QTCfg
Name: The system configurator (QT)
Type: User Interfaces
Source: ui_QTCfg.so
Version: 2.1.1
Author: Roman Savochenko
Translated: Maxim Lysenko
Description: Provides the QT-based configurator of the OpenSCADA system.
License: GPL

The "QTCfg" module provides the configurator of the OpenSCADA system. Configurator is based on
multi-platform library of the graphical user interface (GUI) of the firm TrollTech — QT
(http://www.trolltech.com/qt).

At the core if the module lies the management interface language of the OpenSCADA system, and thus
provides a uniform configuration interface. Update of the module may be required only in the case of
updating the specification of the language of the management interface. To request a page context used the
group request management interface that allows you to optimize time, for remote access to high latency and
slow communication channels.

The module <QTCfg> of subsystems “User Interfaces” 437

http://www.trolltech.com/qt

Lets examine the working window of the configurator in Fig. 1.

Fig.1. Working window of the configurator

Operating window of the configurator consists of the following parts:
1 Menu — contains a drop-down configurator menu.
2 Toolbar — contains buttons of quickly control.
3 Navigator — is intended for direct navigation of the control tree.

3.1 Text enter field for elements search into current branch of tree.
4 Status line — indicating the status of the configurator.

4.1 Indicator/choice of the user — displays the current user. By double-clicking the user selection
dialog opens. As well as an indicator of changes in configuration.

5 Workplace field — it is divided into parts:
5.1 Node name — contains the name of the current node.
5.2 Tabulator of the working areas — the root page (management areas) of the node are placed
into the tabulator. The management areas of the following levels are placed on the information
panel.

Menu of the configurator contains the following items:
• File — the group of general commands:

• Load from DB — downloads the selected object or branch of object from the database.
• Save to DB — save the selected object or branch of object to the database.
• Close — close the configurator window.
• Quit — termination of the OpenSCADA system.

• Edit — editing commands:
• Add — add a new object to the container.
• Delete — delete the selected object.
• Copy item — copy the selected object.

The module <QTCfg> of subsystems “User Interfaces” 438

• Cut item — cut of the selected object. The original object is removed after paste.
• Paste item — paste of the copied or cut item.

• View — navigation and control of the view commands:
• Up — climb up the tree.
• Previous — open the previous page.
• Next — open the following page.
• Refresh — refresh the current page.
• Start — run periodically update of the contents of the current page with an interval of one
second.
• Stop — stop periodically update od the contents of the current page with an interval of
one second.

• Help — assistance call commands:
• About — information about the module and the OpenSCADA system.
• About Qt — information about the Qt library.
• What's this — the command of the request the information about the elements of the
interface.

The toolbar contains the following management buttons (from left to right):
• Load from DB — downloads the selected object or branch of object from the database.
• Save to DB — save the selected object or branch of object to the database.
• Up — climb up the tree.
• Previous — open the previous page.
• Next — open the following page.
• Add — add a new object to the container.
• Delete — delete the selected object.
• Copy item — copy the selected object.
• Cut item — cut of the selected object. The original object is removed after paste.
• Paste item — paste of the copied or cut item.
• Refresh — refresh the current page.
• Start — run periodically update of the contents of the current page with an interval of one
second.
• Stop — stop periodically update od the contents of the current page with an interval of one
second.
• Call buttons of the modules of the graphical interface based on the QT library

In the navigation tree the context menu of following contents is supported:
• Load from DB — downloads the selected object or branch of object from the database.
• Save to DB — save the selected object or branch of object to the database.
• Add — add a new object to the container.
• Delete — delete the selected object.
• Copy item — copy the selected object.
• Cut item — cut of the selected object. The original object is removed after paste.
• Paste item — paste of the copied or cut item.
• Refresh the elements of a tree — Performs the refreshing of the navigation tree contents.

The control tools are divided into basic, commands, lists, tables and images. All items are displayed in
the sequence strictly appropriate to their location in the description of language of management interface.

The module <QTCfg> of subsystems “User Interfaces” 439

 1. Configuration
To adjust your own behavior in the not obvious situations module provides the ability to customize

individual settings through the management interface of the OpenSCADA (Fig. 2). These parameters are:
• Initial path to the configurator — allows to determine what page to open when you start the
configurator.
• Initial user of the configurator — points on behalf of the which user to open configuration
without requiring a password.
• The link to the configuration page of the external OpenSCADA stations used to enable the
remote configuration.

Fig.2. The configuration page of the configurator.

The module <QTCfg> of subsystems “User Interfaces” 440

 2. Basic elements
Into the number of the basic elements are included: information elements, the field to input values, the

elements of combo box, flags, text fields. In the case of absence of an element name, the basic element
connects to the previous basic element. Examples of basic elements with the connection is shown in Fig.3.

For input elements that do not mean instant change and may be edited for a long time before a final
conclusion, a confirmation mechanism is foretold. This mechanism eliminates the delay when editing,
especially in the case of the configuration of remote stations, and to make changes on the confirmation. To
elements of input with confirmation include: input line fields of text or numeric values and text fields.
Confirmation is made by pressing the button that appears next to the input field after the start of editing.

Input and display text field supports the ability to change the height by setting the bottom edge of the
widget and dragging it. In addition the text box supports syntax highlighting, rules which are transmitted in
the form of regular expressions from the management interface.

Fig.3. Connection of the basic elements.

The module <QTCfg> of subsystems “User Interfaces” 441

 3. Commands
Commands are the elements for the transfer of the certain instructions of the action to the node and for

the organization of the links on the page. Commands may contain parameters. The parameters are formed
from the basic elements. Example of the commands with the parameters is shown in Fig.4.

Fig.4. Command.

The module <QTCfg> of subsystems “User Interfaces” 442

 4. Lists
Lists contain a group of basic elements of the same type. Operations under the elements are accessible

via the context menu of the list. Through the elements of the list can be performed the moving operations to
other pages. The transition is implemented by double-clicking of the mouse on an element of the list. Lists
can be indexed. An example of the list is shown in Fig. 5.

Fig.5. The list.

The module <QTCfg> of subsystems “User Interfaces” 443

 5. Tables
The tables contain values of the basic elements. Type of the basic element is an individual for each

column. Example of the table is given in Fig. 6. Operations on the structure of the table for editable tables
are accessible through the context menu. Editing of the table is done by double-clicking on the desired cell.

Tables support the ability to change the height by setting the bottom edge of the widget and dragging it.

Fig.6. Table.

The module <QTCfg> of subsystems “User Interfaces” 444

 6. Images
The images are designed to transmit graphic information into the configurators. Example of the image is

shown in Fig. 7.

Fig.7. Image.

The module <QTCfg> of subsystems “User Interfaces” 445

The module <WebCfg> of subsystems “User
Interfaces”

Module: WebCfg
Name: The system configurator (Web)
Type: User Interfaces
Source: ui_WebCfg.so
Version: 1.5.6
Author: Roman Savochenko
Translated: Maxim Lysenko
Description: Provides the WEB-based configurator of the OpenSCADA system.
License: GPL

The "WebCfg" module provides the configurator of the OpenSCADA system. Configurator is based on
Web-technologies. For configurator working it is enough the usual WEB-Browser. The operability of the
module "WebCfg" was tested in conjunction with modules "Transport.Sockets" and "Protocol.HTTP" on
the following Web-browsers:

• Mozilla;
• Firefox;
• Konqueror;
• Opera;
• IE.

The module is based on the language of management interface of OpenSCADA system, and thus
provides a uniform configuration interface. Updating of the module may be required only in the case of
updating the specification of the language of management.

In addition to the belonging of the module to the OpenSCADA system, it also belongs, is a module, to
the module transport protocol "HTTP". Actually, the call "WebCfg" makes from of "HTTP". The call is
made through enhanced communication mechanism through exported in module "WebCfg" features:
HttpGet() and HttpSet().

The interface of the module is implemented by means of the language XHTML 1.0 Transitional with
inclusions of the JavaScript.

Using the module starts with the opening session, the user authentication of the user module by the
protocol HTTP (Protocol.HTTP) (Fig. 1). For the operation of the authentication and session saving
mechanism the browser must allow Cookies.

The module <WebCfg> of subsystems “User Interfaces” 446

Fig.1. User authentication.

Fig.2. Structure of the operating window of the user.

After authenticating the user enters the operating window (Fig.2), which consists of the following parts:
1. Header — contains the name of the module.
2. Control Panel — consists of:

2.1. Navigator — serves the navigation functions throug the tree of pages.
2.2. The name of the node.
2.3. User of the System — Displays the current user of the session, his address and lets you to
change the user.

The module <WebCfg> of subsystems “User Interfaces” 447

3. Workplace field — contains the configuration settings of language of management interface,
starting with the root tabs to the end elements.

4. Footer — contains the address of current page.

Addressing of the pages begins with an element of second-level URL. This is due to the fact that the
first-level element is used to identify the module of user Web-interface. For example URL:
"http://localhost.localdomain:10002/WebCfg//Functions" can be deciphered as call of the first-level page
“Functions” of the Web module "WebCfg" on the host localhost.localdomain through the port 10002.

The control tools are divided into: basic, commands, lists, tables and images. All four types are displayed
by individual units not depending on their location in the description.

 1. Basic elements
The basic elements include: information elements, the field for input of the values, the elements of

combo box, flags. To set the new values of the basic elements the group method is used, for this there is a
button “Accept” on the form. In the case of the absence of an element name, the basic element connects to
the previous one. Examples of basic elements, with connections, is shown in Fig.3.

Fig.3. The basic elements and their connections.

 2. Commands
Commands are the elements for the transfer of the certain instructions of the action to the node and for

the organization of the links on the page. Commands may contain parameters. The parameters are formed
from the basic elements. Example of the commands with the parameters is shown in Fig.4.

Fig.4. Command.

The module <WebCfg> of subsystems “User Interfaces” 448

 3. Lists
Lists contain a group of basic elements of the same type. For operations on elements of a list the

additional buttons are added. In addition, through the elements of a list the moving operations to other
pages are carried out. To move the button “Go” is added. Lists can be indexed. Example of the list with the
moving is shown in Fig.5.

Fig.5. The list.

 4. Tables
The tables contain values of basic elements. Type of the basic element is defined separately for each

column. Example of the table is shown in Fig.6.

Fig.6. Table.

The module <WebCfg> of subsystems “User Interfaces” 449

 5. Images
The images are designed to transmit graphic information into the configurators. Example of the image is

shown in Fig. 7.

Fig.7. Image.

The module <WebCfg> of subsystems “User Interfaces” 450

The module <WebCfgD> of subsystems “User
Interfaces”

Module: WebCfgD
Name: Dynamic Web configurator
Type: User Interfaces
Source: ui_WebCfgD.so
Version: 0.8.1
Author: Roman Savochenko
Translated: Maxim Lysenko

Description:
Provides dynamic WEB based configurator. Uses XHTML, CSS and JavaScript
technology.

License: GPL

The "WebCfgD" module provides the configurator of OpenSCADA system. Configurator is
implemented on the basis of Web-technologies:

• HTTP — hypertext transfer protocol;
• XHTML — extended language of markup of the hypertext documents;
• CSS — cascading style sheets of hypertext documents;
• JavaScript — built-in into the hypertext document the browser programming language;
• DOM — document object model of the internal structure of the browser;
• AJAX — arrangement of asynchronous and synchronous requests from the JavaScript to the
server;
• XML — eXtensible Markup Language.

Interface of the configurator is formed in the WEB-browser by reference to the WEB-server and getting
from it the XHTML-document over HTTP. In this case there is the OpenSCADA system in the role of the
WEB-server, which supports standard communication mechanisms of TCP-networks (module
Transport.Sockets), hypertext transfer protocol (module Protocol.HTTP), as well as encryption of traffic
between the browser and the server (Transport.SSL). Based on this to gain access to the interface
configuration of the OpenSCADA, provided by this module, you need to configure the transport in the
OpenSCADA (Transport.Sockets or Transport.SSL) in conjunction with the protocol HTTP
(Protocol.HTTP). In the delivery of the OpenSCADA system there are configuration files containing
settings of Transport.Sockets for ports 10002 and 10004. Hence the interface of the module in the
configuration of the OpenSCADA by default will be available at URL: http://localhost:10002 or
http://localhost:10004.

After receiving the document XHTML the JavaScript program runs to create dynamic interface
configurator.

At the core of the module there is the language of the management interface of the OpenSCADA system,
and thus provides the uniform interface of configuration. Update of module may be required only in the
case of updating the specification of the language of management.

The module was implemented and tested on three WEB-browsers, representatives of the three types of
WEB-engines, as follows:

• Mozilla Firefox 3.0.4
• Opera 9.6.2
• Konqueror 3.5.10

Using the module starts with the opening of the session, the user authentication by the module of the
protocol HTTP (Protocol.HTTP). For the operation of the authentication and the mechanism of saving of
the session the browser must allow Cookies.

The module <WebCfgD> of subsystems “User Interfaces” 451

http://localhost:10004/
http://localhost:10002/

Fig.1. User authentication.

Fig.2. Working window of the configurator

Lets examine the working window of the configurator in Fig. 2.

Working window of the configurator consists of the following parts:
1 Toolbar — contains the control buttons.
2 Address of the open node — displays the current selected node.
3 Navigator — intended for direct navigation through the control tree.
4 Working field — divided into parts:

4.1 The name of the node — contains the name of the current node.
4.2 Tabulator of the working areas — the root pages (control areas) of the node are placed into
the tabulator. The control areas of the following levels are placed on the information panel.

5 Status line — displaying the states of the configurator.

The toolbar contains the following control buttons (from left to right):
• Load — downloads the selected object or branch of object from the database.
• Save — save the selected object or branch of object to the database.

The module <WebCfgD> of subsystems “User Interfaces” 452

• Up — climb up the tree.
• Previous — open the previous page.
• Next — open the following page.
• Add item — add a new object to the container.
• Delete item — delete the selected object.
• Copy item — copy the selected object.
• Cut item — cut of the selected object. The original object is removed after paste.
• Paste item — paste of the copied or cut item.
• Refresh item and the tree — refresh the current page.
• Start periodic udate — run periodically update of the contents of the current page with an
interval of 5 second.
• Stop periodic update — stop periodically update od the contents of the current page with an
interval of one second.
• About — the information about the module.

The control tools are divided into basic, commands, lists, tables and images. All items are displayed in
the sequence strictly appropriate to their location in the description of language of management interface.

 1. Configuration
To adjust your own behavior in the not obvious situations module provides the ability to customize

individual settings through the management interface of the OpenSCADA (Fig. 3). These parameters are:
• The lifetime of the authentication session (min) — points during which time interval of user
inactivity his session will be saved.
• The link to the configuration page of the external OpenSCADA stations used to enable remote
configuration.

Fig.3. The configuration page of the configurator.

The module <WebCfgD> of subsystems “User Interfaces” 453

 2. Basic elements
Into the number of the basic elements are included: information elements, the field to input values, the

elements of choice from the list, flags. In the case of absence of an element name, the basic element
connects to the previous basic element. Example of the group of the basic elements with the connection is
shown in Fig.4.

For input elements that do not mean instant change and may be edited for a long time before a final
conclusion, a confirmation mechanism is foretold. This mechanism eliminates the delay when editing,
especially in the case of the configuration of remote stations, and to make changes on the confirmation. To
elements of input with confirmation include: input line fields of text or numeric values and text fields.
Confirmation is made by pressing the button that appears next to the input field after the start of editing.

Fig.4. Connection of the basic elements.

The module <WebCfgD> of subsystems “User Interfaces” 454

 3. Commands
Commands are the elements for the transfer of the certain instructions of the action to the node and for

the organization of the links on the page. Commands may contain parameters. The parameters are formed
from the basic elements. Example of the commands with the parameters is shown in Fig.5.

Fig.5. The command.

The module <WebCfgD> of subsystems “User Interfaces” 455

 4. Lists
Lists contain a group of basic elements of the same type. Operations under the elements are accessible

via the context menu by the mouse click on the list. Through the elements of the list can be performed the
moving operations to other pages. Lists can be indexed. An example of the list is shown in Fig. 6.

Fig.6. The list.

The module <WebCfgD> of subsystems “User Interfaces” 456

 5. Tables
The tables contain values of the basic elements. Type of the basic element is an individual for each

column. Example of the table is given in Fig. 7. Operations on the structure of the table for editable tables
are accessible through the context menu by the mouse clicking on the service button with the line number.
Editing of the table is done by double-clicking on the desired cell.

Fig.7. The table.

The module <WebCfgD> of subsystems “User Interfaces” 457

 6. Images
The images are designed to transmit graphic information into the configurators. Example of the image is

shown in Fig. 8.

Fig.8. The image.

The module <WebCfgD> of subsystems “User Interfaces” 458

 7. Errors
Performance of the configurator may differ for different types of browsers. This is due to the fact that the

basis of this module is quite a lot of complex technologies, as well as differences between them on different
types of WEB-engines.

In addition, each Web-browser has its own problems. Some errors were outflanked in the process of
implementation, but part of them has stayed in sight of the significant difficulties in their outflanking and
also of actual impossibility to do so.

This section contains a table listing the detected errors of the WEB-browsers, which are appeared in the
configurator.

Error Description Correction
Mozilla FireFox 3.0.4 (stable, few errors)

Offset of the popup
window of the editable
combobox at 5 pixels
up and left.

The problem lies in the fact that the calculation of the absolute
position of the element of the document doesn't grab exactly 5
pixels. Error of 5 pixels is visible in relation to the coordinates
of the mouse pointer and the position of the newly-created
entirely-positioned window. The algorithm for computing the
position: for(; obj != null; obj = obj.offsetParent) posX +=
obj.offsetLeft;

To correction of
this error to the
estimated value
on this browser
the 5 pixels are
added.

In the element of the
list (<select
size="10"/>) the
vertical scroller is
always shows and
never turned on the
horizontal one.

This element is actively used for building the context menu and
drop-down list of the editable combo-box.

To outflank the
browser's error I
had to include
the list in the
block with scroll
of the block
itself.

The image field is not
updating.

In order to eliminate the need for restructuring of the
configurable page while updating the values of fields in the tree
of the structure objects of the pages which was get from the
XMLHttpRequest, the properties are created with the links to the
object of the tags of the fields (addr_lab, addr_val_w). In objects
with the name of the tag "img", these properties are not created
by the browser.

The problem is
not solved.

Opera (stable, few errors)
Scroller of the unit of
the page does not turn
on. For example when
displaying large
images of the trend.

The block is fixed with the parameters{ overflow: auto; width:
600px; } however, in the case of the exceeding the size of the
interior elements the scroller is not turned on.

The problem is
not solved.

Konqueror (very unstable on the dynamic resources and contains many errors)

Stable browser
crashing.

Browser repeatedly and consistently crashes while the
computation of JavaScript and when dealing with external
windows.

The problem is
not solved.

The skroll of the
navigation tree doesn't
returned.

If the navigation tree to expand until the vertical scroll is
appeared, then scroll down it, then fold a large branch, the
vertical sсroll disappears, and a part of the tree remains invisible
in the upper part of the block. Ie the contents of the block is not
updated.

The problem is
not solved.

The module <WebCfgD> of subsystems “User Interfaces” 459

Error Description Correction

The images do not
update.

In the fields of images, to update the image from the server, the
property "src" is to be changed. Browser does not feel it, or even
updates the size of the frame, and the image is not updated.
Methods to prevent caching of the images are used, but do not
help.

The problem is
not solved.

Capture of the images
of the buttons

JavaScript modules use non asynchronous, but synchronous
requests to a server to save the sequence of actions. In moments
of such a request if it was caused by the event from the image
(the image is a button), the image is captured as if to move, even
for short mouse clicks.

The problem is
not solved.

Impossible to insert a
new element to the
tree of objects
obtained as a result of
XMLHttpRequest

To monitor the modification of the configuration page the
current tree structure to a new one, just received from
XMLHttpRequest, reduction was used. When inserting a new
element to the tree of the structure through the insertBefore() an
error occurs "DOM error 4". If the paste is made to the tree
created from zero (not from XMLHttpRequest), this error does
not occur. It seems the problem lies in the contrast of object
"document" — the owner of these trees. In such a tree it is not
possible to add a node as document.createElement (). Only
created as a mytree.ownerDocument.createElement() are
inserted.

The procedure
for verifying the
structure was
simplified to
reduced to the
determining the
fact of changes.

The mechanisms of
the formation of the
context menu in the
Konqueror 4 doesn't
work.

Typically, to form a context menu handler oncontextmenu is
used in Firefox and IE, or onmousedown in processing the right
keys on the remaining browsers. In the Konqueror generally
oncontextmenu does not work, but onmousedown only works in
Konqueror 3.5.

The problem is
not solved.

The module <WebCfgD> of subsystems “User Interfaces” 460

The module <VCAEngine> of subsystems "User
Interfaces"

Module: VCAEngine

Name: Visual control area engine

Type: User Interfaces

Source: ui_VCAEngine.so

Version: 1.3.0

Author: Roman Savochenko

Translated: Maxim Lysenko

Description: The main visual control area engine.

License: GPL

VCAEngine module provides visual control area engine (VCA) in OpenSCADA system. Module itself
does not implement the visualization of the VCA, and contains data in accordance with the ideology of
«model/data — Interface». Data visualization of that module is implemented by the visualization modules
of VCA, such as Vision and WebVision.

Visual control area (VCA) is an integral part of the SCADA system. It applies to the client stations with
a view to providing accessible information about the object and to for the the issuance of the control actions
to the object. In various practical situations and conditions the VCA, based on different principles of
visualization may by applied. For example, this may be the library of widgets QT, GTK+, WxWidgets or
hypertext mechanisms based technologies HTML, XHTML, XML, CSS, and JavaScript, or third-party
applications of visualization, realized in various programming languages Java, Python, etc. Any of these
principles has its advantages and disadvantages, the combination of which could become an insurmountable
obstacle to the use of VCA in a practical case. For example, technologies like the QT library can create
highly-reactive VCA, which will undoubtedly important for the operator station for control of technological
processes (TP). However, the need for installation of that client software in some cases may make using of
it impossible. On the other hand, Web-technology does not require installation on client systems and is
extremely multi-platform (it is enough to create a link to the Web-server at any Web-browser) that is most
important for various engineering and administrative stations, but the responsiveness and reliability of such
interfaces is lower that actually eliminates the using of them at the operator of the TP stations.

OpenSCADA system has extremely flexible architecture that allows you to create external interfaces,
including user and in any manner and for any taste. For example, the system configuration OpenSCADA as
now available as by means of the QT library, and also the Web-based.

At the same time creation of an independent implementation of the VCA in different basis may cause the
inability to use the configuration of one VCA into another one. That is inconvenient and limited from the
user side, as well as costly in terms of implementation and follow-up support. In order to avoid these
problems, as well as to create as soon as possible the full spectrum of different types of VCA project of the
creation of the conception of the VCA is established. The result of this project — the engine module(data
model) of the VCA, as well as direct visualization modules Vision and WebVision.

 1. Purpose
This module of the engine (data model) of the VCA is aimed to create the logical structure of the VCA

and the execution of sessions of individual instances of the VCA projects. Also, the module provides all the
necessary data to the final visualizers of the VCA, both through local mechanisms of interaction of
OpenSCADA, and through the management Interface of OpenSCADA for remote access.

The module <VCAEngine> of subsystems "User Interfaces" 461

http://wiki.oscada.org/HomePageEn/Doc/WebVision?v=h86
http://wiki.oscada.org/HomePageEn/Doc/Vision?v=n04
http://wiki.oscada.org/Doc/KoncepcijaSredyVizualizacii?v=th4
http://wiki.oscada.org/Doc/KoncepcijaSredyVizualizacii?v=th4
http://wiki.oscada.org/HomePageEn/Doc/WebVision?v=h86
http://wiki.oscada.org/HomePageEn/Doc/Vision?v=n04

The final version of the VCA module, built on the basis of this module, will provide:
• three levels of complexity in the formation of visualization interface which let organically to
develop and apply the tools of the methodology from simple to complex:

• formation from the template frames through the appointment of the dynamics (without the
graphical configuration);
• graphical formation of new frames through the use of already made visualization elements
from the library (mimic panel);
• formation of new frames, template frames of the visualization elements in the libraries.

• building of the visualization interfaces of various complexity, ranging from simple flat interfaces
of the monitoring and finishing with the full-fledged hierarchical interface used in SCADA systems;
• providing of the different ways of formation and configuration of the user interface, based on
different graphical interfaces (QT, Web, Java ...) and also through the standard management
interface of OpenSCADA system;
• change of dynamics in the process of execution;
• building of the new template frames on the user level and the formation of the frames libraries,
specialized for the area of application (eg the inclusion of frames of parameters, graphs and other
items linking them to each other) in accordance with the theory of secondary using and
accumulation;
• building of the new user elements of the visualization and the formation of the libraries of
frames,specialized for the area of application in accordance with the theory of secondary using and
accumulation;
• description of the logic of new template frames and user visualization elements as with the simple
links, and also with the laconic, a full-fledged programming language;
• the possibility of the inclusion of the functions(or frames of computing of the functions) of the
object model of OpenSCADA to the user elements of the visualization, actually linking the
presentation of the algorithm of computing (for example, by visualizing the library of models of
devices of TP for following visual modeling TP);
• separation of user interfaces and interfaces of visualization of data provides building the user
interface in a single environment, and performance of it in many others (QT, Web, Java ...);
• the possibility to connect to the performing interface for monitoring and corrective actions (for
example, while operator training and control in real time for his actions);
• Visual building of various schemes with the superposition of the logical links and the subsequent
centralized execution in the background (visual construction and performance of mathematical
models, logic circuits, relay circuits and other proceedings);
• providing of the the functions of the object API to the OpenSCADA system, it can be used to
control the properties of the visualization interface from the user procedures;
• building of the servers of frames, of elements of the visualization and of the project of the
interfaces of the visualization with the possibility to serve the great number of the client
connections;
• simple organization of client stations in different basis (QT, Web, Java ...) with the connection to
the central server;
• full mechanism of separation of privileges between the users which allows to create and execute
projects with the various rights of access to its components;
• adaptive formation of alarms and notifications, with the support of different ways of notification;
• support of the user formation of the palettes and font preferences for the visualization of the
interface;
• support of the user formation of maps of the events under the various items of equipment
management and user preferences;
• support for user profiles, allowing to define various properties of the visualization interface
(colors, font characteristics, the preferred maps of events);
• flexible storage and distribution of libraries of widgets, frames, and projects of the visualization
interfaces in the databases, supported by OpenSCADA; actually users need only to register the
database with data.

The module <VCAEngine> of subsystems "User Interfaces" 462

 2. The configuration and the formation of interfaces of the VCA
Module itself does not contain a visual tool for creating interfaces of VCA, based on one of the one of

the mechanisms. Such tools can be given by the final visualization modules of the VCA, for example the
module Vision of such a tool is provided.

Although the visual tool for the formation of the VCA the module doesn't provide the interface,
implemented on the basis of the management interface of the OpenSCADA, to manage the logical structure
is provided, and thus it is available for use in any system configurator of the OpenSCADA. Dialogues of
this interface are considered further in the context of the architecture of the module and its data.

The module <VCAEngine> of subsystems "User Interfaces" 463

http://wiki.oscada.org/HomePageEn/Doc/Vision?v=n04

 3. Architecture
Any VCA can operate in two modes — the development and execution. In the development mode the

VCA interface and its components are formed, the mechanisms of interaction are identified. While the
execution it is carried out the formation of VCA interface and еру interaction, based on the developed
VCA, with the final user is made.

VCA interface is formed of the frames, each of which, in its turn, formed from elements of the
primitives, or user interface elements. In doing so, the user interface elements are also formed from the
primitives or other user elements. That gives us a hierarchy and reuse of already developed components.

Frames and user elements are placed in the libraries of widgets. The projects of the interfaces of the final
visualization of the VCA are formed from these libraries' elements. Based on these projects the
visualization sessions are formed.

The structure of VCA is shown in Fig. 3.

Fig.3 Generalized structure of the VCA.

The module <VCAEngine> of subsystems "User Interfaces" 464

This architecture of the VCA allows the support of three levels of complexity of the developing process
of the management interface:

• Forming of the VC interface (visualization and control) using the library of template frames by
placing the templates of the frames in the project and by the assignment of the dynamics.
• In addition to the first level the own creation of frames based on the library of derivatives and
basic widgets is to be done. Perhaps as a direct appointment of the dynamics in the widget, and the
subsequent appointment of it in the project.
• In addition to the second level is performed the independently forming of derivatives widgets,
new template frames and also the frames with the use of mechanism of describing the logic of
interaction and handling of events in one of the languages of a user programming of OpenSCADA
system.

 3.1. Frames and elements of visualization (widgets)

Frame is the window which directly provides information to the user in a graphical or text form. The
group of interconnected frames creates whole user interface of VC.

The contents of the frame is forming from the elements of visualization (widgets). Widgets may be the
basic primitives (different flat shapes, text, trend, etc.) and derivatives (formed from the basic or other
derivatives of widgets). All the widgets are grouped into the libraries. In the process, you can build your
own library of derivative widgets.

Actually the frame is also a widget that is used as a final element of visualization. This means that the
widget libraries can store the blanks of frames and the templates of the resulting pages of the user interface.

Frames and widgets are passive elements that do not normally contain links to the dynamics and other
frames, but only provide information about the properties of the widget and the nature of the dynamics
(configuration), connected to the properties of the frame. Activated frames, ie containing links to the
dynamics and active connections, form the user interface and are stored in the projects. In some cases, it is
possible the direct appointment of the dynamics in the blanks of frames.

The module <VCAEngine> of subsystems "User Interfaces" 465

Derivative frames/widgets can contain other widgets (attached), which can be glued (associated) with the
logic of one another by one of the languages of programming available in the OpenSCADA system
(Fig.3.1.1).

Fig.3.1.1 Example of the structure of the derived widget.

The widget is an element, by means of which it is provided:
• visualization of operational and archive information about TP;
• alarm about a violation of conduction of TP;
• switching between the frames of TP;
• management of technological equipment and the parameters of conduction of TP.

Tuning and linkage of the widgets is done through their properties. Parent widget and the widgets it
contains, can be complemented by user properties. Then the user and static attributes are associated with the
properties of embedded widget by internal logic. To show the dynamics (ie, current and archived data),
properties of widgets are dynamized, that is linked with the attributes of the parameters of OpenSCADA or
properties of other widgets. Using to link of the nested widgets by means of the internal logic with the
available programming language of the OpenSCADA system eliminates the question of the implementation
of complex logic of visualization, thus providing high flexibility. Practically, you can create fully
dynamized frames with complex interactions at the level of the user.

Between widgets at different levels of hierarchy complex inheritance relations are arranged, which are
defined by the possibility of using some widgets by other ones, beginning with the library widget, and
finishing with the widget to the session. To clarify these features of the interaction in Fig. 3.1.2
comprehensive map of «uses» inheritance is shown.

The module <VCAEngine> of subsystems "User Interfaces" 466

Fig.3.1.2 Map of «uses» inheritance of the the components of conception/engine

At the session level widget contains a frame of values of calculation procedure. This frame is initiated
and used in the case of presence of the calculation procedure. At the time of the initialization the list of
parameters of the procedure is created and a compilation of procedure is performed with these parameters
in the module, implementing the selected programming language and encoded with the full name of the
widget. A compiled function is connected to the frame of values of the calculation procedure. Further the
calculation is performed with the frequency of session.

Calculation and processing of the widget as a whole runs in the following sequence:

The module <VCAEngine> of subsystems "User Interfaces" 467

• the events, which are available at the time of computation, are selected from the attribute "event"
of the widget;
• events are loaded into the parameter "event" of the frame of computation;
• values of the input connections are loaded in the frame of calculation;
• values of special variables are loaded in the computation frame (f_frq, f_start and f_stop);
• values of selected parameters of the widget are loaded in the frame of computation;
• computation;
• uploading of the computation frame values into the selected parameters of the widget;
• uploading of the event from the parameter "event" of the computation frame;
• processing th events and transfer the unprocessed events at the level above.

 3.2. Project

Direct configuration and properties of the final visualization interface are contained in the project of the
visualization interface of the VCA. It may be created a lot of projects of the visualization interfaces.

Each project includes frames from the libraries of the frames/widgets. A frame provides a tool for the
dynamics to the properties described therein. All properties of the frame may be associated with dynamics
or authorized by the constants, and can act as a template for the formation of derivative pages. In fact, each
frame may contain multiple pages with their own dynamics. This mechanism allows to extremely simplify
the process of creating the same type of the frames by the ACS-TP engineer or by the user of OpenSCADA
for easy monitoring. An example of such one-type frames may be: groups of contours, groups of graphs,
reports and various tables. Mnemonic schemes of technological processes rarely come under this scheme
and will be formed directly in the description of the frame.

To provide the possibility of creation of a complex hierarchical interfaces of VC the frames, placed into
the project, can be grouped by name in the hierarchical form and by the appropriate visualization in the
form of a tree. In addition to this a mechanism of associative description of the calling of the frames
through regular expressions is provided.

The module <VCAEngine> of subsystems "User Interfaces" 468

Example of hierarchical representations of components of the project of the classical interface of VC of
the technological process with the description of standard expressions is given in Fig. 3.2.

Fig.3.2 Hierarchical view of components of the project of classical interface of VC of the technological
process.

In accordance with the Fig.3.1.2 objects of the session of the project inherit from an abstract object
"Widget" and use the appropriate objects of the project. Thus, the session ("Session") uses the project
("Project") and forms expand tree on its basis. Project page "Page" is directly used by the session page
"SessPage". The remaining objects ("SessWdg") are deployed in accordance with the hierarchy of page
elements (Fig.3.1.2).

In addition to the standard properties of an abstract widget ("Widget") elements of the pages of session
themselves get the following properties: storage of the frame of values of computational procedure,
calculation of the procedures and mechanism for processing of the events. Pages of the session, in addition,
contain a container of the following by the hierarchy pages. The session generally is computed with the
frequency and in the consistency:

• «Page of the top level» -> «Page of the lower level»
• «Widget of the lower level» -> «Widget of the top level»

The module <VCAEngine> of subsystems "User Interfaces" 469

This policy allows you to traverse the pages in accordance with the hierarchy, and to rise on the top
during the one iteration for the widget events.

The session supports the special properties of pages:
• Container — page is a container for the underlying pages;
• Template — page is a template for the underlying pages;
• Empty — empty, inactive, page; this feature is used in conjunction with the property Container
for logical containers organization.

Based on these properties the following types of pages are realized:
• Standard — The standard page (none property is set). It is the full final page.
• Container — Full page with the feature of the container (Container).
• Logical container — Logical container is actually not a page (Container|Empty). Performs
property of the intermediate and bunching element in the tree of pages.
• Template — Template page (Template). Pure template page is used to describe the common
properties and hipping them in privately order in nested pages.
• Container and template — The template and a container page (Template|Container). Combines
the functions of the template and the container.

Switching, opening, substitution and navigation through the pages is based on processing of the events
by the scenario in the attribute of the active widget "evProc". The scenario of this attribute is stored as a list
of commands with the syntax:<event>:<evSrc>:<com>:<prm>. Where:

• event — the expected event;
• evSrc — the path of the nested widget-source of the event;
• com — session command;
• prm — parameter of the command.

The following commands are implemented:
• open — Opening page. Page to open is specified in the parameter <prm> both: in direct way and
as a template (example: /pg_so/1/*/*).
• next — The opening of the next page. Page to open is specified in the parameter <prm> as a
template (example: /pg_so/*/*/$).
• prev — Opening of the previous page. Page to open is specified in the parameter <prm> as a
template (example: /pg_so/*/*/$).

Special characters of the template are deciphered as follows:
• pg_so — direct name of the desired page with the prefix. Requires the compulsory accordance
and is used to identify the last open page;
• 1 — name of a new page in a general way, without a prefix. It is ignored when it detects a
previous open pages;
• * — the page is taken from the name of a previous opened page or the first available page is
substituted, if the previous opened page is missing;
• $ — points the place of the opened page relative to which you are to go to the next or to the
previous one.

To understand the mechanism of the templates lets cite some real examples:
• Changing the signal object:

Command: open:/pg_so/2/*/*
In was: /pg_so/pg_1/pg_mn/pg_1
It is: /pg_so/pg_2/pg_mn/pg_1

• Switching of the type:
Command: open:/pg_so/*/gkadr/*
It was: /pg_so/pg_1/pg_mn/pg_1
It is: /pg_so/pg_1/pg_gkadr/pg_1

• Next/previous page of the type:
Command: next:/pg_so/*/*/$
It was: /pg_so/pg_1/pg_mn/pg_1
It is: /pg_so/pg_1/pg_mn/pg_2

The module <VCAEngine> of subsystems "User Interfaces" 470

As an example lets cite the scenario of operation of the main page of the user interface:
ws_BtPress:/prev:prev:/pg_so/*/*/$
ws_BtPress:/next:next:/pg_so/*/*/$
ws_BtPress:/go_mn:open:/pg_so/*/mn/*
ws_BtPress:/go_graph:open:/pg_so/*/ggraph/*
ws_BtPress:/go_cadr:open:/pg_so/*/gcadr/*
ws_BtPress:/go_view:open:/pg_so/*/gview/*
ws_BtPress:/go_doc:open:/pg_so/*/doc/*
ws_BtPress:/go_resg:open:/pg_so/rg/rg/*
ws_BtPress:/so1:open:/pg_so/1/*/*
ws_BtPress:/so2:open:/pg_so/2/*/*
ws_BtPress:/so3:open:/pg_so/3/*/*
ws_BtPress:/so4:open:/pg_so/4/*/*
ws_BtPress:/so5:open:/pg_so/5/*/*
ws_BtPress:/so6:open:/pg_so/6/*/*
ws_BtPress:/so7:open:/pg_so/7/*/*
ws_BtPress:/so8:open:/pg_so/8/*/*
ws_BtPress:/so9:open:/pg_so/9/*/*
ws_BtPress:*:open:/pg_control/pg_terminator

In conjunction with the mechanism, above described, on the side of the visualization (RunTime) there is
the logic regulating how to open the pages. The logic is built on the following attributes of the basic
element "Box":

• pgOpen — Sign "The page is opened".
• pgNoOpenProc — Sign "Perform the page, even if it is not opened".
• pgOpenSrc — Contains the address of the widget or of the page which has opened the current. In
the case of the nested container widget here it is contained the address of the included page. To open
the pages from the script here it is enough to indicate the address of the widget-source of the
opening.
• pgGrp — Group of pages. Used for conjunction of the containers of the pages with the pages in
accordance with the general group.

The logic of the method of the opening the pages work in the following way:
• if the page has the group "main" or coincides with a group of the page in the main window or
there is no page on the main window, then open the page in the main window;
• if the page has a group which coincides with the group one of the containers of the current page,
then open it in the container;
• if the source of the opening of the page coincides with the current page, then open it as an
additional window over the current page;
• transmit a call for request for the opening to the additional windows with the processing in each
of the first three paragraphs;
• if any one of the relative windows doesn't open a new page, then open it as a related window of
the main window.

 3.3. Styles

We know that people can have individual characteristics in the perception of graphical information. If
these features are not taken into account, it is possible to obtain the rejection and seizure of the user to the
interface of VC. This rejection and seizure can lead to fatal errors in the management of TP, as well as
traumatize the human by the continuous work with such interface. In SCADA systems the agreements are
adopted, which regulate the requirements for creating a unified interface of VC normally perceived by most
people. This is actually eliminates the features of people with some deviations.

In order to take this into account and allow centralized and easy to change the visual properties of the
interface module is scheduled to implement a theme manager of the visualization interface.

User can create many themes, each of which will keep the color, font and other properties of the
elements of the frame. Simple changing of the theme will allow you to change the interface of VC, and the
possibility of appointing an individual theme in the user's profile allows to take into account his individual
characteristics.

The module <VCAEngine> of subsystems "User Interfaces" 471

To realize this opportunity, when you create a frame, it is necessary for the properties of color, font and
others set the «Config» (of the table if the «process» tab) in the value of «From style» (Fig. 3.7). And in the
parameter «Config template» to specify the identifier of the style field. Further, this field will automatically
appear in the Style Manager and will be there to change. Style Manager is available on the project
configuration page in the tab «Styles» (Fig. 3.3). On this tab you can create new styles, delete old ones,
change the field of the style and delete unnecessary.

Fig. 3.3 "Styles" tab of the configuration page of the project.

In general the styles are available from the project level. At the level of libraries of widgets you can only
define styles fields of widgets. At the project level, at the choice of style it is started the work with styles,
which includes access to the fields of styles instead of direct attribute values. In fact, this means that when
reading or writing a widget attribute these operations will be carried out with the corresponding field of the
chosen style.

When you run the project execution it will be used the set in the project style. Subsequently, the user can
select a style from the list of available ones. The user's style will be saved and used next time you run the
project.

The module <VCAEngine> of subsystems "User Interfaces" 472

 3.4. Events, their processing and the events' maps

Given the range of tasks for which the OpenSCADA system may be used, it is necessary to provide a
tool for management of interactive user events. This is due to the fact that in dealing with individual tasks
of embedded systems, input and control devices can greatly vary. But it is enough to look at the regular
office keyboard and notebook one, that would remove any doubt about the necessity for the manager of
events.

Event manager must work using the maps of events. Map of the events — is the list of named events,
indicating their origin. The origin of the events can be a keyboard, mouse, paddle, joystick, etc. If you have
any event manager of the events is looking for it in the active map and compares with the name of the
event. A comparison name of the event is placed in the queue for processing. Widgets in this case must
process the given queue of events.

The active map of events is specified in the profile of each user or is set by default.

In general, four types of events are provided:
• events of the images of VCA (prefix: ws_), for example, pressing of the button event —
ws_BtPress;
• keyboard events (prefix: key_) — all events from mouse and keyboard in the form of —
key_presAlt1;
• user events (prefix: usr_) are generated by the user in the procedures of the calculation of
widgets;
• mapping of the event (prefix: map_) — events from the map of events.

Event itself represents little information, especially if its processing occurs at higher level. For the
unequivocal identification of the event and its source in the whole the event is recorded as follows:
"ws_BtPress:/curtime". Where:

ws_BtPress — event;
/curtime — the path to the child element that has generated the event.

Table 3.4 provides a list of standard events, the support of which should be provided in visualizers of
VCA.

Table 3.4. Standard events
Id Description

Keyboard events: key_[pres|rels][Ctrl|Alt|Shift]{Key}

*SC#3b Scan code of the kye.

*#2cd5 Code of the unnamed key.

*Esc "Esc".

*BackSpace Removing of the previous character — "<--".

*Return, *Enter Enter — "Enter".

*Insert Insertion — "Insert".

*Delete Deleting — "Delete".

*Pause Pause — "Pause".

*Print Print of the screen — "Print Screen".

*Home Home — "Home".

*End End — "End".

*Left Left — "<-".

*Up Up — '^'.

*Right Right — "->".

The module <VCAEngine> of subsystems "User Interfaces" 473

Id Description

*Down Down — '\/'.

*PageUp Page up — "PageUp".

*PageDown Page down — "PageDown".

*F1 - *F35 Function key from "F1" to "F35".

*Space Space — ' '.

*Apostrophe Apostrophe — '`'.

Asterisk Asterisk on an additional field of the keyboard — ''.

*Plus Plus on an additional field of the keyboard — '+'.

*Comma Comma — ','.

*Minus Minus — '-'.

*Period Period — '.'.

*Slash Slash — '\'.

*0 - *9 Number from '0' to '9'.

*Semicolon Semicolon — ';'.

*Equal Equal — '='.

*A - *Z Keys of Latin alphabet from 'A' to 'Z'.

*BracketLeft Left square bracket - '['.

*BackSlash Backslash — '/'.

*BracketRight Right square bracket — ']'.

*QuoteLeft Left quote — '''.

Keyboard focus events.

ws_FocusIn Focus is obtained by a widget.

ws_FocusOut Focus is lost by a widget.

Mouse events:

key_mouse[Pres|Rels][Left|Right|
Midle]

Pressed/released the mouse button.

key_mouseDblClick Double-click the left mouse button.

Events handshake on the side of the visualizer.

ws_alarmLev Acknowledgment of all violations by all means notice.

ws_alarmLight Acknowledgment of all violations of the notification by
flashing/light.

ws_alarmAlarm Acknowledgment of all violations of the notification buzzer.

ws_alarmSound Acknowledgment of all violations of the notification
sound/speech.

Events of the primitive of elemental figure ElFigure:

ws_Fig[Left|Right|Midle|DblClick] Activating of the figures (fills) by the mouse button.

ws_Fig{n}[Left|Right|Midle|
DblClick] Activating of the figure (fill) {n} by the mouse button.

Events of the primitive of form elements FormEl:

The module <VCAEngine> of subsystems "User Interfaces" 474

Id Description

ws_LnAccept A new value in the input line is set.

ws_TxtAccept The value of the the text editor is changed.

ws_ChkChange The state of the flag is changed.

ws_BtPress The button is pressed.

ws_BtRelease The button is released.

ws_BtToggleChange Button toggle is changed.

ws_CombChange The value of the combo box is changed.

ws_ListChange The current list item is changed.

ws_SliderChange Changing of the the slider position.

Events of the primitive of media content Media:

ws_MapAct{n}[Left|Right|Midle] Media area with the number {n} is activated by the mouse button.

ws_MediaFinished Media-stream finish play.

Events are the main mechanism of notification and is actively used for user interaction. For the event
processing there are two mechanisms: the script used to control the opening of the pages and the
computational procedure of the widget.

The mechanism "Scripts for the control the opening of pages" based on the basic attribute of the widget
"evProc" and is described in detail in section 3.2.

The mechanism "Processing the event with the help of computational procedure of the widget" is based
on the attribute "event" and the user procedure of calculating written with the help of the language of the
user programming of OpenSCADA. Events, in process of receipt, are accumulated in the attribute "event"
till the moment of call of computational procedure. Computational procedure is called with the specified
frequency of calculating the widget and receives a value for the attribute "event" as the list of events. In the
calculation procedure the user can: analyze, process and delete the processed events from the list, and add
to the list new events. The remaining, after the procedure execution, events are analyzed for compliance
with the conditions of the call by means of script of the first mechanism, after which the remaining events
are transmitted to the upper by the hierarchy widget to be processed by it, with the correction of the path of
events in accordance with the hierarchy of the penetration of the event.

The contents of the attribute "event" is a list of events in the format <event>:<evSrc>, with the event on
the separate line. Here is an example of processing events in the Java-like programming language of the
OpenSCADA:

using Special.FLibSYS;
ev_rez = "";
off = 0;
while(true)
{
 sval = strParse(event,0,"\n",off);
 if(sval == "") break;
 else if(sval == "ws_BtPress:/cvt_light") alarmSt = 0x1000001;
 else if(sval == "ws_BtPress:/cvt_alarm") alarmSt = 0x1000002;
 else if(sval == "ws_BtPress:/cvt_sound") alarmSt = 0x1000004;
 else ev_rez+=sval+"\n";
}
event=ev_rez;

The module <VCAEngine> of subsystems "User Interfaces" 475

 3.5. Signaling (Alarms)

An important element of any visualization interface is the user notification about the violation — alarm.
To simplify the perception, but also in mind the close connectivity of visualization and notification
(typically notification is amplified with the visualization) it is decided to integrate the interface of a
notification in the visualization interface. To do this, all the widget provides two additional attributes (of
the session level): "alarm" and "alarmSt". Attribute "alarm" is used to form the signal by the widget,
according to his logic, and attribute "alarmSt" is used to control the signaling fact of the branch of the tree
of the session of the project.

Attribute "alarm" is a line and has the following format: {lev|categ|message|type|tp_arg}
Where:

• lev — signaling (alarm) level; number from 0 to 255;
• categ — alarm category; parameter of the acquisition subsystem, object, path, or a combination;
• message — signaling (alarm) message;
• type — type of notification (visual, speech, and beep) is formed as a the integer number, which
contains the flags of notification methods:

• 0x01 — visual;
• 0x02 — beep, is frequently made through the PC-speaker;
• 0x04 — sound signal from the sound file or the speech synthesis, and if in the <tp_arg>
the name of the resource of the sound file is specified, then play it, or in other case the
speech synthesis from the text specified in <message> is made.

• tp_arg — argument of the type; it is used in the case of the audible signal to indicate the resource
of the sound alarm (file of the sound format).

Attribute "alarmSt" is an integer number that represents the maximum alarm level and the fact of the
quittance of the branch of the tree of the session of the project. Format of the number is as follows:

• first bite (0-255) characterizes the level of the alarm of the branch;
• the second byte indicates the type of notification (as well as in the attribute "alarm");
• the third byte indicates the type of notification without quittance (as well as in the attribute
"alarm");
• the first bit of the the fourth byte has a special appointment, setting this bit is the fact of the
quittance of the notification referred to the first byte.

Alarm formation and receipt of it by the visualizer.

Alarm formation is performed by the widget by setting its own attribute "alarm" in appropriate way and
in accordance with it the attribute "alarmSt" of current and the parent widget is set. Visualizers receive
notification of the alarm using a standard mechanism for notifications of the changes of attributes of
widgets.

This mechanism provides the ability to build the signaling (alarm) interfaces at the level of subsystems
"data acquisition", or directly at the level of representation.

Taking into account that the processing of conditions of the signaling is made in the widgets, the page
containing the objects of signaling should be performed in the background, regardless of their openness to
the moment. This is done by setting a flag of the background execution of the page.

Although the mechanism of signaling is built in the visualization area the possibility of formation of
visual signaling elements remains, for example by creating the page that will never be opened.

Quittance

Quittance is done by specifying the root of the branch of the widgets and the types of notification. This
allows to make quittance on the side of visualizer both as by groups, for example by the signaling objects as
well as individually by the objects. It is possible to independently quit different types of alarms. Setting of
the quittance is made by the simple modification of the attribute "alarmSt".

Example of the script to work with the signals is listed below:

//Allocation of the existence of alarms of different ways of notification
cvt_light_en = alarmSt&0x100;

The module <VCAEngine> of subsystems "User Interfaces" 476

cvt_alarm_en = alarmSt&0x200;
cvt_sound_en = alarmSt&0x400;
//Allocation of the existence of not quited alarms of different ways notification
cvt_light_active = alarmSt&0x10000;
cvt_alarm_active = alarmSt&0x20000;
cvt_sound_active = alarmSt&0x40000;
//Processing of the event buttons of quittance and quittance of different ways of
notification
ev_rez = "";
off = 0;
while(true)
{
 sval = strParse(event,0,"\n",off);
 if(sval == "") break;
 else if(sval == "ws_BtPress:/cvt_light") alarmSt = 0x1000001;
 else if(sval == "ws_BtPress:/cvt_alarm") alarmSt = 0x1000002;
 else if(sval == "ws_BtPress:/cvt_sound") alarmSt = 0x1000004;
 else ev_rez+=sval+"\n";
}
event=ev_rez;

 3.6. Rights management

For the separation of access to the interface of VC and its components every widget contains information
about the owner, about its group and access rights. Access rights are recorded as is the convention in the
OpenSCADA system, in the form of a triad: <user><group><rest> where each element consists of three
attributes of access. For the elements of the VCA the following interpretation is taken:

• 'r' — the right to review the widget;
• 'w' — the right to control over the widget.

In the development mode a simple scheme of access "root.UI:RWRWR_" is used, which means — all
users can open and view the libraries, their components and projects, and all users of group "UI" user
interfaces) can edit.

In the performance mode the right described in the components of interface work.

 3.7. Linkage with the dynamics

To provide relevant data in the visualization interface the data of subsystems "Data acquisition (DAQ)"
must be used. The nature of these data as follows:

1. parameters that contain some number of attributes;
2. attributes of the parameter can provide information of four types: Boolean, Integer, Real and
String;

3. attributes of the parameter can have their history (archive);
4. attributes of the parameter can be set to read, write, and with full access.

Considering the first paragraph it is necessary to allow the possibility of the group of destination links.
To do this we use the conception of of the logic level.

In accordance with paragraph 2, links provide transparent conversion of connection types and do not
require special configuration.

To satisfy the opportunities for access to archives, in accordance with paragraph 3, links make check of
the type of the attribute, and in the case of connection to the "Address", the address of linkage is put into the
value.

In terms of the VCA, the dynamic links and configuration of the dynamics are the one process, to
describe a configuration of which the tab "Processing" of the widgets is provided (Fig.3.7.a). The tab
contains a table of configuration of the properties of the attributes of the widget and the text of calculation
procedure of the widget.

The module <VCAEngine> of subsystems "User Interfaces" 477

http://wiki.oscada.org/Doc/DAQ?v=11z2

Fig. 3.7.a The tab "Processing" of the configuration page of the widget.

In addition to configuration fields of the attributes the column "Processing" in the table is provided, for
selective using of the attributes of the widgets in the computational procedure of the widget, and the
columns "Configuration" and "Configuration template", to describe the configuration of links.

Column "Configuration" allows you to specify the linkage type for the attribute of the widget:
• Constant — in the tab of widget links the field for indication of a constant appears, for example
of the special color or header for the template frames;
• Input link — linkage with the dynamics for a read-only;
• Output link — linkage with the dynamics just for the record;
• Full link — complete linkage with dynamic (read/write).

Column "Configuration template" makes it possible to describe the groups of dynamic attributes. For
example it may be different types of parameters of subsystem "DAQ". Furthermore, in the case of correct
formation of this field, the mechanism of automatically assign of the attributes with the only indication of
the parameter of subsystem "DAQ" is working, which simplifies and accelerates the configuration process.
The value of this column has the following format: <Parameter>|<identifier>, where:

• <Parameter> — the group of the attribute;
• <Identifier> — identifier of the attribute, this value is compared with the attributes of the DAQ
parameters with automatic linkage, after the group link indication.

Installation of the links may be of several types, which are determined by the prefix:
• val: — Direct download of the value through the links mechanism. For example, link: "val:100"
loads in the attribute of the widget the value of the 100. It is often used in the case of absence of end
point of the link, in order to direct value indicating.

The module <VCAEngine> of subsystems "User Interfaces" 478

• prm: — Link to the attribute of the parameter or parameter, in general, for a group of attributes,
of subsystem "Data acquisition". For example, the link "prm:/LogicLev/experiment/Pi/var"
implements the access of the attribute of the widget to the attribute of the parameter of subsystem
"Data acquisition". Sign "(+)" at the end of the address signals about successful linking and presence
of the target.
• wdg: — Link to an attribute of another widget or a widget, in general, for a group of attributes.
For example, the link "wdg:/ses_AGLKS/pg_so/pg_1/pg_ggraph/pg_1/a_bordColor" implements
the access of the attribute of one widget to the attribute of another one. Supported absolute and
relative link's path. Start point of absolute point is root object of module "VCAEngine", then the
first item of absolute address is a session or a project identifier. On session side first item is passed
then set into a project links there work. For relative links by start point used widget with the link set.
The item ".." of parent node is special item of relative links.
• arh: — A special type of link is only available for a particular attribute such as "Address," which
allows you to connect directly to the archive values ("arh:CPU_load"). It may be useful to specify
the archive as a source of data for primitive "Diagram".

Processing of the links occurs at a frequency of calculating the widget in the following order:
• Receiving of the data from input links.
• The implementation of calculating of the script.
• Transmission of the values by the output links.

In the Fig. 3.7.b the tab of links with the group assignment of the attributes by the only specifying the
parameter is presented, and in Fig. 3.7.c — with the individual appointment of the attributes.

Fig. 3.7.b Tab "Links" of the page of configuration of the widget with the group assignment of the attributes
by the only specifying of the parameter.

The module <VCAEngine> of subsystems "User Interfaces" 479

Fig. 3.7.c Tab "Links" of the page of configuration of the widget with the individual appointment of the
attributes.

The module <VCAEngine> of subsystems "User Interfaces" 480

When the widget that contains the configuration of links is placed to the container of widgets, all links of
the source widget is added to the list of resulting links of the widgets' container (Fig. 3.7.d)

Fig. 3.7.d Tab "Links" of the page of configuration of the container of widgets, including widgets with
links.

The aforesaid shows that the links are set by the user in the configuration interface. However, for the
possibility of creation of the frames for general use, with the function of providing detailed data of various
sources of the same type, a dynamic linkage mechanism is necessary. Such an mechanism is provided
through a reserved key identifier "<page>" of the group of attributes of links in the frames of general
purpose and dynamic linkage with the identifier "<page>" in the process of opening of the frame of general
purpose by means of the signal from another widget.

Lets examine the example when we have the frame of general-purpose "Control panel of graph" and a lot
of "Graphs" in different tabs. "Control panel of graph" has links with the templates:

• tSek --> "<page>|tSek"
• tSize --> "<page>|tSize"
• trcPer --> "<page>|trcPer"
• valArch --> "<page>|valArch"

At the same time, each widget "Graph" has the attributes tSek, tSize, trcPer and valArch. In the case of a
calling of the opening signal of "Control panel of graph" from any widget "Graph" it is happening the
linkage of the attributes of the "Control panel of graph" in accordance with the attribute specified in the

The module <VCAEngine> of subsystems "User Interfaces" 481

template with the attribute of the widget "Graph". As a result, all changes in the "Control panel of graph"
will be displayed on the graph by means of the link.

In the case of presence of external links to the parameters of subsystem "Data acquisition" in the widget
"Graph", the links of "Control panel of graph" will be installed on an external source. In addition, if in the
"Control panel of graph" will be declared the links to the missing attributes directly in the widget "Graph",
it will be made the search for the availability of such attributes from an external source, the first to which
the link is directed, performing, thus, the addition of missing links.

To visualize this mechanism the table 3.7 is cited.

Table 3.7. The mechanism of the dynamic linkage.
Attributes of the "Control panel

of graph" (the template of
dynamic linkage)

"Graph"
attributes

Attributes of an
external

"Parameter"

The resulting link or an
value of the linking

attribute

tSek (<page>|tSek) tSek - "Graph".tSek

tSize (<page>|tSize) tSize - "Graph".tSize

trcPer (<page>|trcPer) trcPer - "Graph".trcPer

valArch (<page>|valArch) valArch - "Graph".valArch

var (<page>|var) var var "Parameter".var

ed (<page>|ed) - ed "Parameter".ed

max (<page>|max) - - EVAL

min (<page>|min) - - EVAL

The module <VCAEngine> of subsystems "User Interfaces" 482

 3.8. The primitives of the widget

Any newly created widget is based on one of several primitives (finite element of the visualization) by
installing of the related link as directly to the primitive, as well as through the several intermediate user
widgets. Each of the primitives contains a mechanism (logic) of data model. A copy of the widget keeps the
values of the properties of configuration of the the primitive specially for itself.

The purposes of the visualization interface includes support and work with the data model of the
primitives of widgets. Primitives of the widget must be carefully developed and unitized in order to cover
as many opportunities in the as possible to a smaller number of weakly connected with each other by their
purpose primitives.

Table 3.8.a shows the list of primitives of widgets (basic elements of visualization).

Table 3.8.a. The library of the primitives of widgets (basic elements of visualization)
Id Name Function

ElFigure
Elementary graphic
figures

Primitive is the basis for drawing basic graphic shapes with their
possible combinations in a single object. The support of the
following basic figures is provided:

• Line.
• Arc.
• Bézier curve.
• Fill of the enclosed space.

For all the figures contained in the widget it is set the common
properties of thickness, color, etc., but this does not exclude the
possibility of indicating the above attributes for each figure
separately.

FormEl Elements of the form.

Includes support for standard form components:
• Line edit.
• Text edit.
• Check box.
• Button.
• Combo box.
• List.
• Slider.
• Scroll bar.

Text Text Text element (labels). Characterized by the type of font, color,
orientation and alignment.

Media Media

Element of visualization of raster and vector images of various
formats, playback of animated images, playback of audio segments
and playback of video fragments. Perhaps it should be included the
OpenGL support!

Diagram Diagram Element of the diagram with the support of the visualization of the
flow of several trends, the spectrum

Protocol Protocol
Element of the protocol, visualizer of the system messages, with
support for multiple operating modes.

Document Document The element of generating the reports, journals and other
documentation on the basis of available in the system data.

Box Container
Contains the mechanism fro other widgets placement with the
purpose of creation of new, more complex widgets and pages of
final visualization.

The module <VCAEngine> of subsystems "User Interfaces" 483

Id Name Function

Function
Function of API of the
object model of
OpenSCADA

Not visual, on the side of execution, widget which allows to include
a computing function of the object model of OpenSCADA in the
VCA.

Each primitive, and the widget at all, contains the common set of properties/attributes in the composition
which is shown in Table 3.8.b:

Table 3.8.b. The common set of properties/attributes in the widget
Id Name # Value

id Id -
Id of the element. The attribute is read-only, designed to provide
information on the ID of the element.

path Path - The path to the widget. The attribute is read-only and disigned to
provide information about the location of the element.

parent Parent -
Path to parent widget. The attribute is read-only and designed to
provide information about the location of ancestor from which the
widget is inherited from.

owner Owner - The widget owner and group in form "[owner]:[group]". By
default the "root:UI".

perm Access -

Permission to the widget in form "[user][group][other]".
Where "user", "group" and "other" is:

• "__" — no any access;
• "R_" — read only;
• "RW" — read and write.

By default the 0664(RWRWR_).

root Root 1 Id of the widget-primitive (basic element) which underlies the
image of visualization of the widget.

name Name - Name of the element. Modifiable element name.

dscr Description - Description of the element. Text field, serves for attachment to
the widget of the brief description.

en Enabled 5
The state of the element — "Enabled". Disabled element is not
shown in the execution mode.

active Active 6
The state of the element — "Active". Active element may receive
focus in the execution mode, and thus receive keyboard and other
events with their subsequent processing.

geomX Geometry:x 7 Geometry, coordinate 'x' of the element position.

geomY Geometry:y 8 Geometry, coordinate 'y' of the element position.

geomW Geometry:width 9 Geometry, the width of the element.

geomH Geometry:height 10 Geometry, the height of the element.

geomXsc
Geometry:x
scale 13 The horizontally scale of the element.

geomYsc Geometry:y
scale

14 The vertical scale of the element.

geomZ Geometry:z 11
Geometry, coordinate 'z' (level) of element on the page. It also
defines how to transfer the focus through active elements.

geomMargin Geometry:margi
n

12 Geometry, the fields of the element.

The module <VCAEngine> of subsystems "User Interfaces" 484

Id Name # Value

tipTool Tip:tool 15 The text of a brief help or tip on this element. Usually is realized
as a tool tip, while keeping your mouse cursor over the element.

tipStatus Tip:status 16

Text information on the status of the element or guide to action
over the element. Usually is realized in the form of a message in
the status bar while keeping your mouse cursor over the element.

* Modifications from session the attribute of the root page
will record the message in the status bar of the visualization
window session.

contextMenu Context menu 17

Context menu in form strings list: "[ItName]:[Signal]".
Where:

• "ItName" — item name;
• "Signal" — signal name and result signal name is

"usr_[Signal]".

evProc Events process -

Attribute for storing of the script of the processing of event of
direct control of user interface. Script is the list of commands to
the visualization interface generated at the event receipt (attribute
event). Direct events processing for pages manipulation in form:
"[event]:[evSrc]:[com]:[prm]". Where:

• "event" — waiting event;
• "evSrc" — event source;
• "com" — command of a session (open, next, prev);
• "prm" — command parameter, where used:

• pg_so — direct name of the desired page with the
prefix;

• 1 — name of a new page in a general way, without
a prefix;

• * — the page is taken from the name of a previous
page;

• $ — points the place of the opened page relative.
Examples:

• ws_BtPress:/prev:prev:/pg_so/*/*/$
• ws_BtPress:/next:next:/pg_so/*/*/$
• ws_BtPress:/go_mn:open:/pg_so/*/mn/*
• ws_BtPress:/go_graph:open:/pg_so/*/ggraph

Additional attributes for items placed into the project in the role of a page.

pgOpen Page:open state -
Sign "The page is open".

* Modifications from session provides an immediate
opening/closing page.

pgNoOpenProc Page:process no
opened

- Sign "Execute the page, even if it is closed".

pgOpenSrc Page:open
source

3

Full address of the page which has opened this one.
* Write/clear address of the opening initiator — widget
performs an immediate opening/closing page. In the case of
write the address and on certain conditions carried the
dynamic linking of the current widget to the initiator.

pgGrp Page:group 4 The group of the page.

Additional attributes of the execution mode.

The module <VCAEngine> of subsystems "User Interfaces" 485

Id Name # Value

event Event -

Special attributes for the collection of events of the widget in the
list, which is divided by the new line. This attribute is only
available in the session. Access to the attribute is protected by the
resource in order to avoid loss of events. An attribute is always
available in the script of widget.

load Load -1 A virtual command of the group data download.

focus Focus -2

Special attribute of the indicating the fact of receiving the focus
by an active widget. This attribute is only available in the session.
Attribute of the widget and of the the embedded widgets is
available in the script of widget.

perm Permition -3
Virtual attribute of the rights verification of active user on the
viewing and control over the widget.

* — Special function the widget attribute running in the session of the project when user modification.

The module <VCAEngine> of subsystems "User Interfaces" 486

 3.8.1. Elementary graphic figures (ElFigure)

Primitive is the basis for drawing basic graphic shapes with their possible combinations in a single
object. Taking into account the wide range of various shapes, which must be maintained by the primitive,
and at the same time the primitive must be simple enough for using and, if possible, for implementation, it
was decided to limit the list of the basic figures used for the construction of the resulting graphics to these
figures: line, arc, Bézier curve and fill of the enclosed spaces. Based at these basic figures, it is possible to
construct derived figures by combining the basic. in the context of the primitive, there is possibility to set
the transparency of the color in the range [0 .. 255], where '0' — complete transparency.

A list of additional properties/attributes of the primitive is given in Table 3.8.1.

Table 3.8.1. A list of additional properties/attributes of the primitive ElFigure
Id Name # Value

lineWdth Line:width 20 Line width.

lineClr Line:color 21

Color name form "color[-alpha]", where:
• "color" — standard color name or digital view of three

hexadecimal digit's number form "#RRGGBB";
• "alpha" — alpha channel level (0-255).

Examples:
• "red" — solid red color;
• "#FF0000" — solid red color by digital code;
• "red-127" — half transparent red color.

lineStyle Line:style 22 Line style (solid, dashed, dotted).

bordWdth Border:width 23 Line border width. The zero width indicates the lack of border.

bordClr Border:color 24 Border color (detailed in attribute 21).

fillColor Fill:color 25 Fill color (detailed in attribute 21).

fillImg Fill:image 26

Image name in form "[src:]name", where:
• "src" — image source:

• file — direct from local file by path;
• res — from DB mime resources table.

• "name" — file path or resource mime Id.
Examples:

• "res:backLogo" — from DB mime resources table for Id
"backLogo";

• "backLogo" — like previous;
• "file:/var/tmp/backLogo.png" — from local file by path

"/var/tmp/backLogo.png".

orient
Orientation
angle 28 The rotation angle of the content of widget.

The module <VCAEngine> of subsystems "User Interfaces" 487

Id Name # Value

elLst Element's
list

27

List of graphic primitives in the following format:
• Line. Record form in the list:

line:(x|y)|{1}:(x|y)|{2}:[width|w{n}]:[color|c{n}]:[bord_w|
w{n}]:[bord_clr|c{n}]:[line_stl|s{n}]

• Arc. Record form in the list:
arc:(x|y)|{1}:(x|y)|{2}:(x|y)|{3}:(x|y)|{4}:(x|y)|{5}:[width|
w{n}]:[color|c{n}]:[bord_w|w{n}]:[bord_clr|c{n}]:[line_stl|
s{n}]

• Bézier curve. Record form in the list:
bezier:(x|y)|{1}:(x|y)|{2}:(x|y)|{3}:(x|y)|{4}:[width|w{n}]:
[color|c{n}]:[bord_w|w{n}]:[bord_clr|c{n}]:[line_stl|s{n}]

• Fill. Record form in the list:
fill:(x|y)|{1},(x|y){2},...,(x|y)|{n}:[fill_clr|c{n}]:[fill_img|i{n}]

Where:
(x|y) — direct point (x,y) coordinate in float point pixels;
{1}...{n} — dynamic point 1...n;
width, bord_w — direct line and border width in float point
pixels;
w{n} — dynamic width 'n';
color, bord_clr, fill_clr — direct line, border and fill color
name or 32bit code whith alpha: {name}-AAA, #RRGGBB-
AAA;
c{n} — dynamic color 'n';
line_stl — direct line style: 0-Solid, 1-Dashed, 2-Dotted;
s{n} — dynamic style 'n';
fill_img — direct fill image in form "[src%3Aname]", where:
"src" — image source:
file — direct from local file by path;
res — from DB mime resources table.
"name" — file path or resource mime Id.
i{n} — dynamic fill image 'n'.

For example:
• line:(50|25):(90.5|25):2:yellow:3:green:2
• arc:(25|50):(25|50):1:4:(25|50)::#000000-0
• fill:(25|50):(25|50):c2:i2
• fill:(50|25):(90.5|25):(90|50):(50|50):#d3d3d3:h_31

The attributes for each point from the list of graphic figures elLst

p{n}x Point {n}:x 30+n*6 Coordinates 'x' of the point {n}.

p{n}y Point {n}:y 30+n*6+1 Coordinates 'y' of the point {n}.

The module <VCAEngine> of subsystems "User Interfaces" 488

Id Name # Value

w{n} Width {n} 30+n*6+2 Width {n}.

с{n} Color {n} 30+n*6+3 Color {n} (detailed in attribute 21).

i{n} Image {n} 30+n*6+4 Image {n} (detailed in attribute 26).

s{n} Style {n} 30+n*6+5 Style {n}.

The module <VCAEngine> of subsystems "User Interfaces" 489

 3.8.2. Element of the form (FormEl)

Primitive is intended to provide the standard form elements to the user. The general list of attributes
depends on the type of element. A list of additional properties/attributes of the primitive is given in Table
3.8.2.

Table 3.8.2. A set of additional properties/attributes of primitive FormEl
Id Name # Value

elType Element
type

20 Type of element (Line edit, Text edit, Check box, Button, Combo box, List,
Slider, Scroll bar). On its value it is depended a list of additional attributes.

Line edit:

value Value 21 The contents of the line.

view View 22
Type of the editing line (Text; Combobox; Integer; Real Time, Date, Date
and Time).

cfg Config 23 Configuration of the line. The format of the value of the field for different
types of lines:

Text — the formated input configuration with parameters:
A — ASCII alphabetic character required. A-Z, a-z.
a — ASCII alphabetic character permitted but not required.
N — ASCII alphanumeric character required. A-Z, a-z, 0-9.
n — ASCII alphanumeric character permitted but not required.
X — Any character required.
x — Any character permitted but not required.
9 — ASCII digit required. 0-9.
0 — ASCII digit permitted but not required.
D — ASCII digit required. 1-9.
d — ASCII digit permitted but not required (1-9).
— ASCII digit or plus/minus sign permitted but not required.
H — Hexadecimal character required. A-F, a-f, 0-9.
h — Hexadecimal character permitted but not required.
B — Binary character required. 0-1.
b — Binary character permitted but not required.
> — All following alphabetic characters are uppercased.
< — All following alphabetic characters are lowercased.
! — Switch off case conversion.
\\ — Use to escape the special characters listed above to use them as

separators.
Combobox — contains a list of the values of the editable combobox.
Integer — contains the configuration of input field of integer in the

format: <Minimum>:<Maximum>:<Step of
change>:<Prefix>:<Suffix>.

Real — contains the configuration of input field of real in the format:
<Minimum>:<Maximum>:<Step of
change>:<Prefix>:<Suffix>:<The number of digits after the
decimal point>.

Time, Date, Date and time — to form the date following the the template
with parameters:
d — number of the day (1-31);
dd — number of the day (01-31);
ddd — acronym of the day ("Mon" ... "Sun");
dddd — the full name of the day ("Monday" ... "Sunday");
M — number of the month (1-12);
MM — number of the month (01-12);

The module <VCAEngine> of subsystems "User Interfaces" 490

Id Name # Value

MMM — acronym of the month ("Jan" ... "Dec");
MMMM — the full name of the month ("January" ... "December");
yy — last two digits of the year;
yyyy — full year;
h — hour (0-23);
hh — hour (00-23);
m — minutes (0-59);
mm — minutes (00-59);
s — seconds (0-59);
ss — seconds (00-59);
AP,ap — to display AM/PM or am/pm.

confirm Confirm 24 Enable confirm mode.

font Font 25

Font name form "{family} {size} {bold} {italic} {underline} {strike}",
where:

• "family" — font family, for spaces use symbol '_', like: "Arial",
"Courier", "Times_New_Roman";

• "size" — font size in pixels;
• "bold" — font bold (0 or 1);
• "italic" — font italic (0 or 1);
• "underline" — font underlined (0 or 1);
• "strike" — font striked (0 or 1).

Examples:
• "Arial 10 1 0 0 0" — Arial font size 10 pixels and bolded.

Text edit:

value Value 21 The contents of the editor.

wordWrap Word wrap 22 Automatic division of text by the words.

confirm Confirm 24 Enable confirm mode.

font Font 25
Font name form "{family} {size} {bold} {italic} {underline} {strike}"
(details above).

Check box:

name Name 26 Bame/label of the checkbox.

value Value 21 Value of the checkbox.

font Font 25
Font name form "{family} {size} {bold} {italic} {underline} {strike}"
(details above).

Button:

name Name 26 Name, the inscription on the button.

value Value 21 The value for the settled button.

img Image 22

The image on the button. Image name in form "[src:]name", where:
• "src" — image source:

• file — direct from local file by path;
• res — from DB mime resources table.

• "name" — file path or resource mime Id.
Examples:

• "res:backLogo" — from DB mime resources table for Id
"backLogo";

• "backLogo" — like previous;
• "file:/var/tmp/backLogo.png" — from local file by path

"/var/tmp/backLogo.png".

The module <VCAEngine> of subsystems "User Interfaces" 491

Id Name # Value

color Color 23

Color of the button. Color name form "color[-alpha]", where:
• "color" — standard color name or digital view of three hexadecimal

digit's number form "#RRGGBB";
• "alpha" — alpha channel level (0-255).

Examples:
• "red" — solid red color;
• "#FF0000" — solid red color by digital code;
• "red-127" — half transparent red color.

colorText Color:text 27 The color of the text. (details above)

checkable Checkable 24 Sign of functioning as a settled button.

font Font 25
Font name form "{family} {size} {bold} {italic} {underline} {strike}"
(details above).

Combo box:

value Value 21 Current value of the list.

items Items 22 The entries of the list.

font Font 25
Font name form "{family} {size} {bold} {italic} {underline} {strike}"
(details above).

List:

value Value 21 The selected list value.

items Items 22 The entries of the list.

font Font 25
Font name form "{family} {size} {bold} {italic} {underline} {strike}"
(details above).

Slider and the scroll bar:

value Value 21 Slider position.

cfg Config 22

Configuration of the slider in the format: "[VertOrient]:[Min]:[Max]:
[SinglStep]:[PageStep]".
Where:

• "VertOrient" — sign of a vertical orientation, the default is the
horizontal orientation;

• "Min" — minimum value;
• "Max" — maximum value;
• "SinglStep" — the size of a single step;
• "PageStep" — the size of the page step.

The module <VCAEngine> of subsystems "User Interfaces" 492

 3.8.3. Text element (Text)

This primitive is designed to display the plain text used as labels, and different signatures. With the aim
of creating a simple frequent decorations the primitive must support the surrounding of the text by frame. A
list of additional properties/attributes of the primitive is given in Table 3.8.3.

Table 3.8.3. The list of additional properties/attributes of the primitive Text
Id Name # Value

backColor Background:
color

20

Background color. Color name form "color[-alpha]", where:
• "color" — standard color name or digital view of three

hexadecimal digit's number form "#RRGGBB";
• "alpha" — alpha channel level (0-255).

Examples:
• "red" — solid red color;
• "#FF0000" — solid red color by digital code;
• "red-127" — half transparent red color.

backImg
Background:
image 21

Background image. The image on the button. Image name in
form "[src:]name", where:

• "src" — image source:
• file — direct from local file by path;
• res — from DB mime resources table.

• "name" — file path or resource mime Id.
Examples:

• "res:backLogo" — from DB mime resources table for Id
"backLogo";

• "backLogo" — like previous;
• "file:/var/tmp/backLogo.png" — from local file by path

"/var/tmp/backLogo.png".

bordWidth Border:width 22 Border width.

bordColor Border:color 23 Border color (detailed in attribute 20).

bordStyle Border:style 24 Border style
(None;Dotted;Dashed;Solid;Double;Groove;Ridge;Inset;Outset).

font Font 25

Font name form "{family} {size} {bold} {italic} {underline}
{strike}", where:

• "family" — font family, for spaces use symbol '_', like:
"Arial", "Courier", "Times_New_Roman";

• "size" — font size in pixels;
• "bold" — font bold (0 or 1);
• "italic" — font italic (0 or 1);
• "underline" — font underlined (0 or 1);
• "strike" — font striked (0 or 1).

Examples:
• "Arial 10 1 0 0 0" — Arial font size 10 pixels and bolded.

color Color 26 Text color (detailed in attribute 20).

orient
Orientation
angle 27 Orientation of text, rotation on angle.

wordWrap Word wrap 28 Automatic division of text by words.

alignment Alignment 29
Alignment of the text (Top left, top right, top center, top justify,
the bottom left, bottom right, bottom justify; V center left, V
center right, center ; V center justify).

text Text 30 Text value. Use "%{n}" for argument {n} (from 1) value insert.

The module <VCAEngine> of subsystems "User Interfaces" 493

Id Name # Value

numbArg Arguments
number

40 Arguments number.

Attributes of the arguments

arg{x}val Argument
{x}:value

50+10*x Argument value.

arg{x}tp
Argument
{x}:type 50+10*x+1 Argument type: "Integer", "Real", "String"

arg{x}cfg
Argument
{x}:config 50+10*x+2

Argument configuration:
• string: [len] — string width;
• real: [wdth];[form];[prec] — value width, the form of

('g', 'e', 'f');
• integer: [len] — value width.

The module <VCAEngine> of subsystems "User Interfaces" 494

 3.8.4. Element of visualization of media materials (Media)

This primitive is designed to play different media materials, ranging from simple images to the full audio
and video streams. Taking into the account the variety of ways and libraries for playing a full audio and
video streams as well as a serious laboriousness of implementing of all of these mechanisms in this widget,
it was decided at the initial stage, only to realize the work with images and with simple animated images
and video formats. A list of additional features/attributes of the primitive is given in Table 3.8.4.

Table 3.8.4. A set of additional properties/attributes of primitive Media
Id Name # Value

backColor Background:col
or

20

Background color. Color name form "color[-alpha]", where:
• "color" — standard color name or digital view of three

hexadecimal digit's number form "#RRGGBB";
• "alpha" — alpha channel level (0-255).

Examples:
• "red" — solid red color;
• "#FF0000" — solid red color by digital code;
• "red-127" — half transparent red color.

backImg
Background:im
age 21

Background image. The image on the button. Image name in
form "[src:]name", where:

• "src" — image source:
• file — direct from local file by path;
• res — from DB mime resources table.

• "name" — file path or resource mime Id.
Examples:

• "res:backLogo" — from DB mime resources table for
Id "backLogo";

• "backLogo" — like previous;
• "file:/var/tmp/backLogo.png" — from local file by path

"/var/tmp/backLogo.png".

bordWidth Border:width 22 Border width.

bordColor Border:color 23 Border color (detailed in attribute 20).

bordStyle Border:style 24 Border style (None; Dotted; Dashed; Solid; Double; Groove;
Ridge; Inset; Outset).

src Source 25

Media source name in form "[src:]name", where:
• "src" — source:

• file — direct from local (visualizator or engine)
file by path;

• res — from DB mime resources table;
• stream — Stream URL for video and audio

play.
• "name" — file path or resource mime Id.

Examples:
• "res:workMedia" — from DB mime resources table for

Id "workMedia";
• "workMedia" — like previous;
• "file:/var/tmp/workMedia.mng" — from local file by

path "/var/tmp/workMedia.mng";
• "stream:http://localhost.localhost:5050" — video and

audio stream play from URL.

The module <VCAEngine> of subsystems "User Interfaces" 495

Id Name # Value

type Type 27

Media type variant:
• "Image" — raster or vector(can not support) image,

like: PNG, JPEG, GIF;
• "Animation" — simple animation image, like: GIF,

MNG;
• "Full video" — full video, audio or stream, like: OGG,

OGM, AVI, MKV, MPG, MP3, MP4.

areas Map areas 28 Number of active areas.

The attributes of the image (Image)

fit
Fit to widget
size 26 Sign "Coordinate the contents with the size of the widget".

The attributes of the video (Movie)

fit
Fit to widget
size 26 Sign "Coordinate the contents with the size of the widget".

speed Play speed 29 The speed of playback, as a percentage from the original
speed. If the value is less than 1%, the playback stops.

The attributes of the full video (Full video)

play Play 29 Video/audio - "Play".

roll Roll play 30 Roll play on finish.

pause Pause 31 Playing pause.

size Size 32 Total video size (in milliseconds).

seek Seek 33 Seek video playing (in milliseconds).

volume Volume 34 Sound volume (0...100).

Active areas

area{x}shp Area {x}:shape 40+3*x Type of the area (Rect;Poly;Circle).

area{x}coo
rd

Area
{x}:coordinates

40+3*x+1 The coordinates of areas. Coordinates are separated by
commas: "x1,y1,x2,y2,xN,yN"

area{x}title Area {x}:title 40+3*x+2 Title of the area.

The module <VCAEngine> of subsystems "User Interfaces" 496

 3.8.5. Element of constructing diagrams/trends (Diagram)

This primitive is designed to construct various diagrams, including graphs/trends showing ongoing
process and archive data. At this time, the following types of diagrams are realized:

• "Graph" — allows you to build a one-dimensional graphs of the values of parameters of
subsystems "Data acquisition" in time, as well as direct use of historical data to graph. It supports
the tracing of current values and the values of the archive modes. It supports also the possibility of
building the graphs of the parameters which have no archive of values.
• "Spectrum" — builds the frequency spectrum of values from the subsystem "Data acquisition".
Window of the data of frequency spectrum is formed on the basis of the size of the widget
horizontally, in pixels, and the available data of the parameters imposed on the horizontal grid size.
In this regard, the minimum frequency is determined by the value of the attribute tSize (1/tSize), and
maximum frequency of allocated frequencies is determined by half-width of the graph in pixels
multiplied by the minimum frequency (width/(2*tSize)). It is supported the formation of the
spectrum in the tracing mode.

The process of access to archive data is optimized, by means of an intermediate buffer for the display, as
well as the package of traffic data in the query. A list of additional properties/attributes of the primitive is
given in Table 3.8.5.

Table 3.8.5. A list of additional properties/attributes of the primitive Diagram
Id Name # Value

backColor Background:col
or

20

Background color. Color name form "color[-alpha]",
where:

• "color" — standard color name or digital view of
three hexadecimal digit's number form
"#RRGGBB";

• "alpha" — alpha channel level (0-255).
Examples:

• "red" — solid red color;
• "#FF0000" — solid red color by digital code;
• "red-127" — half transparent red color.

backImg
Background:ima
ge 21

Background image. The image on the button. Image name
in form "[src:]name", where:

• "src" — image source:
• file — direct from local file by path;
• res — from DB mime resources table.

• "name" — file path or resource mime Id.
Examples:

• "res:backLogo" — from DB mime resources table
for Id "backLogo";

• "backLogo" — like previous;
• "file:/var/tmp/backLogo.png" — from local file by

path "/var/tmp/backLogo.png".

bordWidth Border:width 22 Border width.

bordColor Border:color 23 Border color (detailed in attribute 20).

bordStyle Border:style 24 Border style (None; Dotted; Dashed; Solid; Double;
Groove; Ridge; Inset; Outset).

trcPer
Tracing period
(s) 25 Mode and frequency of tracing.

type Type 26 Diagram type: "Trend".

Attributes of the trend/graph (Trend)

The module <VCAEngine> of subsystems "User Interfaces" 497

Id Name # Value

tSek Time:sek 27 Current time, seconds.

tUSek Time:usek 28 Current time, microseconds.

tSize Size, sek 29 Size of the trend, seconds.

curSek Cursor:sek 30 Cursor position, seconds.

curUSek Cursor:usek 31 Cursor position, microseconds.

curColor Cursor:color 32 Cursor color.

sclColor Scale:color 33 Color of the scale/grid (detailed in attribute 20).

sclHor Scale:horizontal 34
Horizontal mode of the scale/grid: "No draw",
"Grid;Markers" и "Grid and markers".

sclVer Scale:vertical 35
Vertical mode of the scale/grid: "No draw", "Grid",
"Markers", "Grid and markers", "Grid (log)", "Marker
(log)", "Grid and markers (log)".

sclVerScl
Scale:vertical
scale (%) 40 Graphic's vertical scale in percents.

sclVerSclOff Scale:vertical
scale offset (%)

41 Offset of graphic's vertical scale in percents.

sclMarkColor
Scale:Markers:c
olor 36

Color of markers of the scale/grid (detailed in attribute
20).

sclMarkFont Scale:Markers:f
ont

37

Font of markers of scale/grid. Font name form "{family}
{size} {bold} {italic} {underline} {strike}", where:

• "family" — font family, for spaces use symbol '_',
like: "Arial", "Courier", "Times_New_Roman";

• "size" — font size in pixels;
• "bold" — font bold (0 or 1);
• "italic" — font italic (0 or 1);
• "underline" — font underlined (0 or 1);
• "strike" — font striked (0 or 1).

Examples:
• "Arial 10 1 0 0 0" — Arial font size 10 pixels and

bolded.

valArch
Value
archivator 38 Value archivator in form "ArchMod.ArchivatorId".

valsForPix Values for pixel 42 The number of values per pixel. Increase to enhance the
accuracy of export at large time intervals.

parNum
Parameters
number 39

The number of parameters that can be displayed on the one
trend.

Individual attributes of the parameters of trend/graph

prm{X}addr
Parametr {X}
:address 50+10*{X}

Full address to DAQ attribute of a parameter {X} or to an
archive.
Example:

• "/DAQ/System/AutoDA/MemInfo/use" — address
to attribute "use" of parameter "MemInfo" of
controller "AutoDA" of DAQ module "System";

• "/Archive/va_CPULoad_load" — address to
archive "CPULoad_load".

The module <VCAEngine> of subsystems "User Interfaces" 498

Id Name # Value

prm{X}bord
L

Parametr {X}
:view
border:lower

50+10*{X}
+1 The lower limit of the parameter {X}.

prm{X}bord
U

Parametr {X}
:view
border:upper

50+10*{X}
+2

The upper limit of the parameter {X}.

prm{X}color Parametr {X}
:color

50+10*{X}
+3

Color for display of trend of the parameter {X} (detailed
in attribute 20).

prm{X}width
Parametr
{X} :width

50+10*{X}
+6

Line width for display of trend of the parameter {X}, in
pixels.

prm{X}val Parametr {X}
:value

50+10*{X}
+4

Value of the parameter {X} under the cursor.

prm{X}prop Parametr {X}
:properties

50+10*{X}
+7

Real archive properties in form
"BegArh:EndArh:DataPeriod", where:

• BegArh, EndArh, DataPeriod — begin, end and
period archive's data in seconds, real up to
microseconds (1e-6).

The module <VCAEngine> of subsystems "User Interfaces" 499

 3.8.6. The element of building the protocols based on the archives of messages (Protocol)

This primitive is designed to visualize the data of the archive of messages through the formation of
protocols with different ways of visualization, starting from a static scanning view and finishing with
dynamic tracing of protocol of message. A list of additional properties/attributes of the primitive is given in
Table 3.8.6.

Table 3.8.6. A list of additional properties/attributes of the primitive Protocol
Id Name # Value

backColor Background:co
lor

20

Background color. Color name form "color[-alpha]", where:
• "color" — standard color name or digital view of three

hexadecimal digit's number form "#RRGGBB";
• "alpha" — alpha channel level (0-255).

Examples:
• "red" — solid red color;
• "#FF0000" — solid red color by digital code;
• "red-127" — half transparent red color.

backImg
Background:i
mage 21

Background image. The image on the button. Image name in
form "[src:]name", where:

• "src" — image source:
• file — direct from local file by path;
• res — from DB mime resources table.

• "name" — file path or resource mime Id.
Examples:

• "res:backLogo" — from DB mime resources table for Id
"backLogo";

• "backLogo" — like previous;
• "file:/var/tmp/backLogo.png" — from local file by path

"/var/tmp/backLogo.png".

font Font 22

Font of markers of scale/grid. Font name form "{family} {size}
{bold} {italic} {underline} {strike}", where:

• "family" — font family, for spaces use symbol '_', like:
"Arial", "Courier", "Times_New_Roman";

• "size" — font size in pixels;
• "bold" — font bold (0 or 1);
• "italic" — font italic (0 or 1);
• "underline" — font underlined (0 or 1);
• "strike" — font striked (0 or 1).

Examples:
• "Arial 10 1 0 0 0" — Arial font size 10 pixels and bolded.

headVis Header visible 23 Show header for table or not.

time Time, sek 24 Current time, seconds.

tSize Size, sek 25
Query size, seconds. Set value to '0' for get all alarms, for "lev"
< 0.

trcPer Tracing period
(s)

26 Mode and frequency of tracing.

arch Archivator 27 Messages archivator in form "ArchMod.ArchivatorId".

tmpl Template 28

Category template or regular expression "/{re}/". For template
reserved special symbols:

• '*' — any multiply symbols group;
• '?' — any one symbol;
• '\\' — use for shield special symbols.

The module <VCAEngine> of subsystems "User Interfaces" 500

Id Name # Value

lev Level 29 The level of messages. Set value to < 0 for get current alarms.

viewOrd View order 30
View order ("By time", "By level", "By category", "By
messages", "By time (reverse)", "By level (reverse)", "By
category (reverse)", "By messages (reverse)").

col View columns 31

Visible and order columns list separated by symbol ';'. Supported
columns:

• "pos" — row number;
• "tm" — date and time of the message;
• "utm" — microseconds part of time of the message;
• "lev" — level of the message;
• "cat" — category of the message;
• "mess" — the message text.

itProp Item properties 32 Item's properties number.

Individual attributes of item's properties

it{X}lev Item {X}:level 40+5*{X} Criterion: element's level {X}. More or equal for pointed.

it{X}tmpl Item
{X}:template

41+5*{X} Criterion: element's category template {X}. (detailed in attribute
28).

it{X}fnt Item {X}:font 42+5*{X} Element {X} font (detailed in attribute 22).

it{X}сolor Item {X}:color 43+5*{X} Element {X} color (detailed in attribute 20).

The module <VCAEngine> of subsystems "User Interfaces" 501

 3.8.7. Element of formation of documentation(Document)

Primitive is designed to create report, operational and other documents based on templates of documents.
A list of additional properties/attributes of the primitive is given in Table 3.8.7.

Table 3.8.7. A list of additional properties/attributes of the primitive Document

Id Name # Value

style CSS 20 CSS rules in rows like "body { background-color:#818181; }".

tmpl Template 21

Document's template in XHTML. Start from tag "body" and include
procedures parts:

<body docProcLang="JavaLikeCalc.JavaScript">
 <h1>Value<?dp return wCod+1.314;?></h1>
</body>

doc Document 22 Final document in XHTML. Start from tag "body".

font Font 26

Basic font of the text. Font name form "{family} {size} {bold}
{italic} {underline} {strike}", where:

• "family" — font family, for spaces use symbol '_', like:
"Arial", "Courier", "Times_New_Roman";

• "size" — font size in pixels;
• "bold" — font bold (0 or 1);
• "italic" — font italic (0 or 1);
• "underline" — font underlined (0 or 1);
• "strike" — font striked (0 or 1).

Examples:
• "Arial 10 1 0 0 0" — Arial font size 10 pixels and bolded.

bTime Time:begin 24 Start time of the document, seconds.

time Time:current 23 Time of the document generation, seconds. Write time for document
generation from that point.

n Archive size 25 Number of documents or the depth of the archive.

Attributes of the enabled archival mode

aCur Archive:cursor:current -
The position of the current document in the archive. Record of the
value <0 produces the archiving of this document.

vCur Archive:cursor:view - Current visual document of the archive. Writing a value of -1 — to
select the next document, -2 — to select the previous instrument.

aDoc
Archive:current
document - Current archive document in XHTML. Start from tag "body".

aSize Archive:size - Real archive documents size.

Features of the primitive "Document":
• Flexible formation of the structure of the document based on Hypertext Markup Language. This
will provide support of wide formatting opportunities of documents with the subsequent
implementation of the GUI form of the document formation.
• Formation of documents on command or on a plan into the with the archive with the subsequent
viewing of the archive.
• Document formation in real-time mode, fully dynamic and based on the archives for the specified
time.
• Using the attributes of the widget to pass values and addresses to the archives in the document.
Allows you to use the widget of document as the template for generating reports with other input
data.

The module <VCAEngine> of subsystems "User Interfaces" 502

The basis of any document is XHTML-template. XHTML-template is the tag "body" of the WEB-page
which contains the document's static in the standard XHTML 1.0 and elements of the executable
instructions in one of the languages of the user programming of OpenSCADA in the form of <?dp
{procedure} ?>. The resulting document is formed by the execution of procedures and insert of their result
into the document.

The source for values of the executable instructions are the attributes of the widget of the primitive, as
well as all the mechanisms of the user programming language. Attributes may be added by the user and
they can be linked to the actual attributes or parameters or they can be autonomous, values of which will be
formed in the script of the widget. In the case of linked attributes the values can be extracted from the
history, archive.

Fig. 3.8.7.a shows a block diagram of the widget of the primitive "Document". According to this
structure "Document" includes: XHTML-template, the resulting documents and the processing script. The
data source for the script and for the resulting documents are the attributes of the widget.

Fig. 3.8.7.a The block diagram of the primitive "Document".

It i provided the work of widget in two modes: Dynamic and Archive. The difference between archive
mode is the availability of the archive of the specified depth and attributes which allow you to control the
process of archiving and viewing of the document in the archive.

Generation of the document is always made at the time of installation of the time attribute <time>
relatively to the set start time of the document in the attribute <bTime>. With the archive turned off the
resulting document is placed directly in the attribute <doc>. When the archive is turned on the resulting
document is placed in the cell under the cursor, the attribute <aCur>, as well as in <doc> if the value of the
archive cursor <aCur> and the cursor of visualized document <vCur> match. Attributes of the archival
cursors provide several command of values:

• aCur<0 — Moves the archiver cursor for the following position, thereby leaving the previous
document in the archive and clearing the document under the cursor.
• vCur==-1 — Select of the next document to be displayed. The selected document is copied to
the attribute <doc>.
• vCur==-2 — Select of the previous document to be displayed. The selected document is copied
to the attribute <doc>.

As it was stated above dynamics of the document's template is defined by the inserts of executable
instructions of the form <?dp {procedure} ?>. The procedures may use the same attributes of the widget
and functions of the user programming interface of OpenSCADA. In addition to the attributes of the widget
special attributes (Table 3.8.7.a) are reserved.

The module <VCAEngine> of subsystems "User Interfaces" 503

In addition to special attributes in XHTML template tags and tags' attributes of special assignment are
reserved (Table 3.8.7.a).

Table 3.8.7.a. Special and reserved elements of the template.
Name Assignment

Attributes

rez
Attribute of the results of the procedure execution, the contents of which is
placed to the document tree.

lTime Last formation time. If the document is formed for the first time, <lTime> is
equal to the <bTime>.

rTime
Contains the time for the selected values in seconds. It is defined inside the tags
with the attribute "docRept".

rTimeU Contains the time for the selected values in microseconds. It is defined inside
the tags with the attribute "docRept".

rPer Contains the periodicity of the selection of values (the attribute "docRept").

mTime, mTimeU,
mLev, mCat, mVal

It is defined inside the tags with an attribute "docAMess" when parsing
messages of the messages' archive:

mTime — message time;
mTimeU — message time, microseconds;
mLev — message level;
mCat — message category;
mVal — message value.

Special tags

Special attributes of the standard tags

body.docProcLang
Language of executable procedures of the document. By defaults it is
JavaLikeCalc.JavaScript.

*.docRept="1s" Tag with the specified attribute, while the formation it multiplies through the
time offset in the attribute "rTime" to the value, specified in this attribute.

.docAMess="1:PLC"

Indicates the necessity of the tag multiplication with an attribute of message
from the archive of messages for the specified interval of time and in
accordance with the level of (1) and template of request (PLC*). The template
request may specify a regular expression in the form of /{re}/. For this tag in
the process of multiplication the following attributes: mTime, mTimeU, mLev,
mCat and mVal are defined.

*.docRevers="1" Points to invert of the order of multiplication, the last from the top.

*.docAppend="1"
The sign of the necessity of addition of the procedure execution result in the tag
of the procedure. Otherwise, the result of execution replaces the contents of the
tag.

body.docTime Time of formation of the document. It is used to set the attribute <lTime> in the
time of the next formation of the document. It is not set by the user!

table.export="1"
Enable for selected table content allow for export to CSV-file and other table
formats.

The module <VCAEngine> of subsystems "User Interfaces" 504

 3.8.8. Container (Box)

Primitive container is used to build composite widgets and/or the pages the user interface. A list of
additional properties/attributes of the primitive is given in Table 3.8.8.

Table 3.8.8. A list of additional properties/attributes of the primitive Box

Id Name # Value

pgOpenSrc Page:open source 3 Full address of the page, which is included inside of the container.

pgGrp Page:group 4 The group of container of pages.

backColor Background:color 20

Background color. Background color. Color name form "color[-
alpha]", where:

• "color" — standard color name or digital view of three
hexadecimal digit's number form "#RRGGBB";

• "alpha" — alpha channel level (0-255).
Examples:

• "red" — solid red color;
• "#FF0000" — solid red color by digital code;
• "red-127" — half transparent red color.

backImg
Background:imag
e 21

Background image. The image on the button. Image name in form
"[src:]name", where:

• "src" — image source:
• file — direct from local file by path;
• res — from DB mime resources table.

• "name" — file path or resource mime Id.
Examples:

• "res:backLogo" — from DB mime resources table for Id
"backLogo";

• "backLogo" — like previous;
• "file:/var/tmp/backLogo.png" — from local file by path

"/var/tmp/backLogo.png".

bordWidth Border:width 22 Border width.

bordColor Border:color 23 Border color (detailed in attribute 20).

bordStyle Border:style 24 Border style (None; Dotted; Dashed; Solid; Double; Groove; Ridge;
Inset; Outset).

The module <VCAEngine> of subsystems "User Interfaces" 505

 3.9. Using the database to store the library of widgets and projects

Storage of widgets and widget libraries is implemented in the databases accessible in the OpenSCADA
system. DB is organized on the data belonging to the library. Ie a separate library is stored in a separate
group of tables of one or of the different databases. The list of libraries of widgets is stored in the index
table of the libraries with the name "VCALibs" and with the structure “Libs”. A copy of this table is created
in each database, which stores data of the module with the list of libraries which are hold in a given
database. To the composition of the tables belonging to the library of widgets, are included:

• {DB_TBL} — Table of widgets belonging to the library (structure "LibWigets").
• {DB_TBL}_io — Table with the working properties of the widget in this library and of the
embedded widgets of the container ones (structure "LibWidgetIO").
• {DB_TBL}_uio — Table with the user properties of the widgets of this library and the embedded
widgets of container ones (structure "LibWidgetUserIO", раздела БД).
• {DB_TBL}_incl — Table of embedded widgets in the widgets-containers of the Library
(structure "LibWidgetIncl").
• {DB_TBL}_mime — Table with the resources of the library and its widgets (structure
"LibWidgetMime").
• {DB_TBL}_ses — Table for store data of project's run mode, session (structure "PrjSesIO").

Projections (structures) of basic tables are as follows:
• Libs(ID, NAME, DSCR, DB_TBL, ICO) — Libraries of widgets <ID>.

ID — identifier;
NAME — name;
DSCR — description;
DB_TBL — DB with widgets;
ICO — coded (Base64) image of the icon of the library.

• LibWigets(ID, ICO, PARENT, PROC, PROC_PER, USER, GRP, PERMIT, ATTRS) —
Widgets <ID> of the library.

ID — identifier;
ICO — coded (Base64) image of the icon of the widget.
PARENT — address of the basic widget /wlb_originals/wdg_Box ;
PROC — internal script and script language of the widget;
PROC_PER — frequency of the computation of the script of the widget;
ATTRS — list of attributes of the widget, modified by the user.

• LibWidgetIO(IDW, ID, IDC, IO_VAL, SELF_FLG, CFG_TMPL, CFG_VAL) — Work
attributes <ID> of the widget <IDW>.

IDW — identifier of the widget;
ID — identifier of the IO;
IDC — child widget identifier;
IO_VAL — value of the attribute;
SELF_FLG — internal flags of the IO;
CFG_TMPL — template of the configuration element based on this attribute;
CFG_VAL — value of the configuration element (link, constant ...).

• LibWidgetUserIO(IDW, ID, IDC, NAME, IO_TP, IO_VAL, SELF_FLG, CFG_TMPL,
CFG_VAL) — User attributes <ID> of the widget <IDW>.

IDW — identifier of the widget;
ID — identifier of the IO;
IDC — child widget identifier;
NAME — name of the IO;
IO_TP — type and main flags of the IO;
IO_VAL — value of the IO;
SELF_FLG — internal flags of the IO;
CFG_TMPL — template of the configuration element based on this attribute;
CFG_VAL — value of the configuration element (link, constant ...).

• LibWidgetIncl(IDW, ID, PARENT, ATTRS, USER, GRP, PERMIT) — Included into the
container <IDW> widgets <ID>.

The module <VCAEngine> of subsystems "User Interfaces" 506

IDW — identifier of the widget;
ID — Identifier of the copy of the embedded widget;
PARENT — address of the basic widget /wlb_originals/wdg_Box ;
ATTRS — list of attributes of the widget, modified by the user.

• LibWidgetMime(ID, MIME, DATA) — Audio, video, media and other resources of widgets of
the library.

ID — identifier of the resource.
MIME — Mime data type of the resource (in the format — <mimeType;Size>).
DATA — Resource data coded with Base64.

• Project(ID, NAME, DSCR, DB_TBL, ICO, USER, GRP, PERMIT, PER, FLGS) — Projects of
visualization interfaces <ID>.

ID — identifier of the project;
NAME — name of the project;
DSCR — description of the project;
DB_TBL — Database with project pages.
ICO — coded (Base64) image of the icon of the project;
USER — owner of the project;
GRP — users group of the project;
PERMIT — rights of access to the project;
PER — frequency of the computation of the project;
FLGS — flags of the project.

• ProjPage(OWNER, ID, ICO, PARENT, PROC, PROC_PER, USER, GRP, PERMIT, FLGS,
ATTRS) — The pages <ID> which are hold in the project/page OWNER>.

OWNER — project/page — owner of the page (in the format — "/AGLKS/so/1/gcadr")
ID — identifier of the page;
ICO — coded (Base64) image of the icon of the page;
PARENT — address of the basic widget of the page in the format: /wlb_originals/wdg_Box ;
PROC — internal script and script language of the page;
PROC_PER — frequency of the computation of the script of the widget;
FLGS — flags of the page;
ATTRS — list of attributes of the widget, modified by the user.

• ProjSess(IDW, ID, IO_VAL) — Project table <IDW> for data storage of the sessions,
performing project.

IDW — the full path of the element of the project;
ID — attribute of the element;
IO_VAL — value of the element.

• ProjPageIO(IDW, ID, IO_VAL, SELF_FLG, CFG_TMPL, CFG_VAL) — Working attributes
of the pages. The structure actually corresponds to the table LibWidgetIO.
• ProjPageUserIO(IDW, ID, NAME, IO_TP, IO_VAL, SELF_FLG, CFG_TMPL, CFG_VAL) —
User attributes of the pages. The structure actually corresponds to the table LibWidgetUserIO.
• ProjPageWIncl(IDW, ID, PARENT, ATTRS, USER, GRP, PERMIT) — Enabled widgets on
the page. The structure actually corresponds to the table LibWidgetIncl.
• PrjSesIO(IDW, ID, IO_VAL) — Attributes <ID> of the session's element <IDW>.

IDW — identifier of the session's element;
ID — identifier of the IO;
IO_VAL — value of the attribute.

The module <VCAEngine> of subsystems "User Interfaces" 507

 3.10 API of the user programming and service interfaces of the OpenSCADA

 3.10.1. API of the user programming

API of the user programming of API of the visualization engine are represented by OpenSCADA objects
directly, which build user interface, and same "Session" and "Widget/page". These objects provide the set
of control functions for the user:

Object "Session" (this.ownerSess())
• string user() — The session user.
• string alrmSndPlay() — The widget's path for that on this time played the alarm message.
• int alrmQuittance(int quit_tmpl, string wpath = "") — alarm quittance <wpath> with template
<quit_tmpl>. If <wpath> is empty string then make global quittance.

Object "Widget" (this)

• TCntrNodeObj ownerSess() — the object-session is getting for current widget.
• TCntrNodeObj ownerPage() — the parent object-page is getting for current widget.
• TCntrNodeObj ownerWdg(bool base = false) — the parent object-widget is getting for current
widget. If set <base> then will include return the parent object-page.
• TCntrNodeObj wdgAdd(string wid, string wname, string parent) — add new widget <wid> with
name <wname> and based at library widget <parent>.

//New widget add, which based at text primitive
nw = this.wdgAdd("nw", "New widget", "/wlb_originals/wdg_Text");
nw.attrSet("geomX", 50).attrSet("geomY", 50);

• bool wdgDel(string wid) — delete widget <wid>.
• TCntrNodeObj wdgAt(string wid, bool byPath = false) — attach to child or global, by <byPath>,
widget. In the case of global connection, you can use absolute or relative path to the widget. For
starting point of the absolute address acts the root object of module "VCAEngine", which means the
first element of the absolute address is session identifier, which is omitted. The relative address
takes the countdown from the current widget. Special element of relative address is an element of
parent node "..".
• bool attrPresent(string attr) — the attribute <attr> of widget checking to allow fact.
• ElTp attr(string attr) — the attribute <attr> of widget value getting. For disallow attributes will
return empty string.
• TCntrNodeObj attrSet(string attr, ElTp vl) — the attribute <attr> of widget value setting to
<vl>. The object is returned for the function concatenation.
• string link(string attr, bool prm = false) — link return for widget's attribute <attr>. At set
<prm> requested link for attributes block (parameter), represented by the attribute.
• string linkSet(string attr, string vl, bool prm) — set link for widget's attribute <attr>. At set
<prm> made set link for attributes block (parameter), represented by the attribute.

//Set link for eight trend to parameter
this.linkSet("el8.name", "prm:/LogicLev/experiment/Pi", true);

Object "Widget", of primitive "Document" (this)
• string getArhDoc(integer nDoc) — get archive document text to "nDoc" (0-{aSize-1}) depth.

The module <VCAEngine> of subsystems "User Interfaces" 508

Deprecated API of the user programming of the visualization engine are represented by the group of
functions directly in the engine module of the VCA. Calling of these functions from the scripts of widgets
can be performed directly by the ID of the function, since their area of names is indicated for the context of
the scripts of widgets.

Widget list (WdgList)

Description: Returns a list of widgets in the container of widgets or a list of child widgets. If <pg> is set
it returns a list of pages for projects and sessions.

Parameters:
ID Name Type Mode By default

list List String Return

addr Address String Input

pg Pages Bool Input 0

Presence of the node (NodePresent)

Description: Check for the presence of the node, including widgets, attributes and others.

Parameters:
ID Name Type Mode By default

rez Result Bool Return

addr Address String Input

Attributes list (AttrList)

Description: Returns list of attributes of the widget. If <noUser> is set then only not user attributes are
returned.

Parameters:
ID Name Type Mode By default

list List String Return

addr Address String Input

noUser Without user Bool Input 1

Request of the attribute (AttrGet)

Description: Request of the value of the attribute of the widget. The request can be done as by indicating
the full address of the attribute in <addr>, and by indicating separately the address of the widget in <addr>,
and the ID of the attribute in the <attr>.

Parameters:
ID Name Type Mode By default

val Value String Return

addr Address String Input

attr Attribute Bool Input

The module <VCAEngine> of subsystems "User Interfaces" 509

Setting of the attribute (AttrSet)

Description: Setting of the value of the attribute of the widget. Setting can be done as by the indicating
the full address of the attribute in <addr>, and by indicating separately the address of the widget in <addr>,
and the ID of the attribute in <attr>.

Parameters:
ID Name Type Mode By default

addr Address String Input

val Value String Input

attr Attribute Bool Input

Session user (SesUser)

Description: Return session user by session's widget path.

Parameters:
ID Name Type Mode By default

user User String Return

addr Address String Input

 3.10.2. Service interfaces of the OpenSCADA

Service interfaces are interfaces of access to the OpenSCADA system by means of OpenSCADA control
interface from external systems. This mechanism — is the basis of all the mechanisms for sharing within
OpenSCADA, implemented through weak ties, and standard exchange protocol of OpenSCADA.

Access to the values of attributes of the visualization elements (widgets)

In order to provide uniform, group, and relatively fast access to the values of attributes of the visual
elements the service function of the visual element "/serv/attr" and get/set command of the attributes' values
are provided: <get path="/UI/VCAEngine/{wdg_addr}/%2fserv%2fattr"/> and <set
path="/UI/VCAEngine/{wdg_addr}/%2fserv%2fattr"/>. Attributes of these commands, which provide the
various mechanisms of the request, are presented in the Table 3.10.2.a.

Table 3.10.2.a. Attributes of commands of get/set of the the attributes of visual elements
Id Name Value

Request command of the visual attributes of the widget: <get path="/UI/VCAEngine/{wdg_addr}/
%2fserv%2fattr"/>

tm Time/counter of changes Time/counter of changes set up for the query of
the only changed attributes.

<el id="{attr}"
p="{a_id}">{val}</el>

The formation of the child
elements with the results
of the attributes

In the child element are specified: string ID
{attr} of the attribute, index {a_id} of the
attribute and its value {val}.

The set command of the visual attributes of the widget: <set path="/UI/VCAEngine/{wdg_addr}/%2fserv
%2fattr"/>

<el id="{attr}">{val}</el> Set of the ettributes
In the child elements the ID of the attribute
{attr} and its value {val} are specified.

The module <VCAEngine> of subsystems "User Interfaces" 510

http://wiki.oscada.org/HomePageEn/Doc/API?v=141k#h154-1
http://wiki.oscada.org/HomePageEn/Doc/API?v=141k#h154-1

Group access to the values of attributes of the visualization elements (widgets)

In order to optimize network traffic by eliminating small queries, but use one, but a large the group
query of the attributes' values of visual elements is made. Grouping of this query involves a request of
attributes of the entire branch of the widget, including embedded elements. For this request the service
command "/serv/attrBr". Request of this service command is equivalent to the service command "/serv/attr"
and looks as follows:
<get path="/UI/VCAEngine/{wdg_addr}/%2fserv%2fattrBr"/>

tm — Time/counter of changes. Time/counter of changes set up for the query of the only changed
attributes.

Result:
<el id="{attr}" p="{a_id}">{val}</el> — Elements with the results of the attributes. In the element

are specified: string ID {attr} of the attribute, index {a_id} f the attribute and its value {val}.

<w id="{wid}" lnkPath="{lnk_path}">{childs+attrs}</w> — Elements with child widgets and their
attributes. The identifier of the child widget {wid} and the path to the widget on which the current
widget links to, if its is the link {lnk_path}, are specified in the element.

Access to the pages of the session

In order to unify and optimize the access to the pages the service function of the session "/serv/pg" and
commands of the query of the list of open pages (<openlist path="/UI/VCAEngine/ses_{Session}/%2fserv
%2fpg"/>); of opening the pages (<open path="/UI/VCAEngine/ses_{Session}/%2fserv%2fpg"/>); and
closing of the pages <close path="/UI/VCAEngine/ses_{Session}/%2fserv%2fpg"/>) are provided.

The result of the query of the list of open pages are child elements <el>{OpPage}</el> which contain
the full path of the open page. In addition to the list of open pages, the query returns the value of the current
counter for calculating the session in the attribute <tm>. If this attribute is set during the query, then for
each open page it is returned the list of changed, since the moment of the specified value of the counter,
widgets of the open page.

Signaling (alarm) management

To provide a mechanism for global control of the signaling of the session the service function of the
session "/serv/alarm" and commands of the query of the signals status (<get
path="/UI/VCAEngine/ses_{Session}/%2fserv%2falarm"/>); and of the quittance (<quittance
path="/UI/VCAEngine/ses_{Session}/%2fserv%2falarm"/>) are provided.

Request for the status of signals returns generalized condition of the signals, as well as additional
information for the sound signaling. Additional information by sound signal is provided by the current
resource, a sound file, for playback and it provides monitoring of the sequence of signaling and quittance of
individual files of sound messages.

Request for the quittance performs quittance of the specified widget, attribute <wdg>, in accordance
with the template, attribute <tmpl>.

The module <VCAEngine> of subsystems "User Interfaces" 511

Manipulation with the sessions of the projects

To provide a uniform mechanism for manipulation of the sessions by the visualizers of VCA in the
module of the VCA engine (VCAEngin) are provided: the service function "/serv/sess" and query
commands of the list of open sessions, connection/creation of the new session and disconnection/deleting of
the session:<list path="/UI/VCAEngine/%2fserv%2fsess"/>, <connect path="/UI/VCAEngine/%2fserv
%2fsess"/> and <disconnect path="/UI/VCAEngine/%2fserv%2fsess"/> accordingly. Attributes of these
commands, which provide the various mechanisms of the request, are presented in Table 3.10.2.b.

Table 3.10.2.b. Attributes of commands of the mechanism of manipulation with sessions
Id Name Value

Command of request of the list of open sessions for the project: <list path="/UI/VCAEngine/%2fserv
%2fsess"/>

prj
Indication of the
project

Specifies the project for which to return the list of open
sessions.

<el>{Session}</el> Control of the
sessions' list

In the child element the open for the requested project sessions
are specified.

The command of the connection/opening of the session: <connect path="/UI/VCAEngine/%2fserv
%2fsess"/>

sess
Installation and
control of the
session name

If the attribute is defined, then connecting to an existing
session is to be made, else — creation of the new session is to
be made. In the case of opening of the new session in this
attribute its name is is placed.

prj
Setting the name of
the project

It is used to open a new session for indicated project and when
the attribute {sess} is not specified.

The command of disconnection/closing of the session: <disconnect path="/UI/VCAEngine/%2fserv
%2fsess"/>

sess
Setting the name of
the session

Specify the name of the session from that it is made the
disconnection or closing. Sessions, not the background, and to
which none of the visualizers is not connected, are
automatically closed.

The group request of the tree of widget libraries

In order to optimize the performance of local and especially network interaction the service function
"/serv/wlbBr" and command of the query of the tree of widget libraries: <get path="/UI/VCAEngine/
%2fserv%2fwlbBr"/> are provided. The result of the query is the tree with the elements of the libraries of
widgets, tags <wlb>. Inside the tags of libraries of widgets are included: icon tag <ico> and widgets library
tags <w>. Widgets tags, in their turn, contain the icon tag and tags of the child widgets <cw>.

The module <VCAEngine> of subsystems "User Interfaces" 512

 4. Configuring the module via the control interface of OpenSCADA

Through the management interface of OpenSCADA, components that use it, can be configured from any
system configurator OpenSCADA. This module provides an interface to access all of the data object of the
VCA. Main inset of configuration page of the module provides access to widgets libraries and projects (Fig.
4.1). The inset "Sessions" provides access to opened sessions of projects (Fig. 4.2). To adjustment of the
speech synthesis engine it is provided the relevant page (Fig. 4.3).

Fig.4.1 Main configuration page of the module.

The module <VCAEngine> of subsystems "User Interfaces" 513

Fig.4.2 The inset "Sessions" of configuration page of the module.

In addition to the list of open sessions tab in Figure 4.2 contains a table with a list of sessions that must
be created and run at boot time OpenSCADA. Creation of sessions through this tool can be useful for Web-
based interface. In this case, when connecting Web-user data is ready and ensures the continuity of the
formation of archival documents.

The module <VCAEngine> of subsystems "User Interfaces" 514

Fig.4.3 The inset for speech synthesis engine configuration.

The module <VCAEngine> of subsystems "User Interfaces" 515

The configuration of container widgets in the face of libraries and widget projects is done through pages
in Fig. 4.4 (a project) and Fig.4.5 (a library of widgets). Widget library contains widgets, and the draft —
page. Both types contain a tab container configuration Mime-data used widgets (Fig.4.6).

Fig.4.4 The configuration page of the projects.

From this page you can set:
• The state of the container, namely: «Enabled», the name of the database containing the
configuration, the owner and group of the container.
• Id, name, description and icon of the container.
• Access rights to the container.
• The period for computing of the sessions based on the given project.
• Method for opening the main window of execution (original size, maximization and the full
screen).

The module <VCAEngine> of subsystems "User Interfaces" 516

Fig.4.5 The configuration page of the widgets libraries.

From this page you can set:
• The state of the container, namely: «Enabled», the name of the database containing the
configuration.
• Id, name, description and icon of the container.

The module <VCAEngine> of subsystems "User Interfaces" 517

Fig.4.6 The configuration tab of the Mime-data of the container.

The module <VCAEngine> of subsystems "User Interfaces" 518

Configuration of the project session differs significantly from the configuration of the project (Fig. 4.7),
but also contains pages of the project.

Fig.4.7 The configuration page of the sessions of the projects.

From this page you can set:
• The state of the session, namely: "Enabled", "Started", the user, owner, user group, access, source
project, mode of execution in the background, the counter of client connections and execution time
of the session.
• Period of calculation of the session.
• The list of opened pages.

The module <VCAEngine> of subsystems "User Interfaces" 519

The configuration pages of visual elements, placed in different containers, may be very different, but this
difference is the presence or absence of individual tabs. The main tab of visual elements in fact is the same
everywhere, differing in one configuration field (Fig. 4.8). The pages contains the tabs of the child pages
and embedded widget. Container widgets contains the tab of the embedded widgets. All visual elements
contain attributes tab (Figure 4.9), except the logical containers of the projects. Elements, at the level of
which it is possible to build the user procedure and to determine the links, contain the tabs "Process" (Fig.
4.10) and "Links" (Fig.4.11).

Fig.4.8 Main tab of the configuration of visual elements.

From this page you can set:
• The state of element, namely: «Enabled», parent element and jump to it. For the page in the state
it is indicate the type of the page.
• Id, type, root, path, name, description and icon of the element.
• The owner, a group of users and access rights to the element.

The module <VCAEngine> of subsystems "User Interfaces" 520

Fig.4.9 Tab of the attributes of visual elements.

The module <VCAEngine> of subsystems "User Interfaces" 521

Fig.4.10 Tab of the processing of visual elements.

Fig.4.11 Tab of the links of the visual elements.

The module <VCAEngine> of subsystems "User Interfaces" 522

The module <Vision> of subsystems "User
Interfaces"

Module: Vision
Name: Operation user interface (QT)
Type: User interfaces
Source: ui_Vision.so
Version: 1.3.0
Author: Roman Savochenko
Developers: Roman Savochenko, Maxim Lysenko, Ksenia Yashina
Translated: Maxim Lysenko
Description: Visual operation user interface.
License: GPL

Vision module provides a mechanism of the final visualization control area (VCA) into the
OpenSCADA. The module is based on the multi-platform library of graphical user interface (GUI) of firm
TrollTech — QT (http://www.trolltech.com/qt). In its work, the module uses the data of the VCA engine
(module VCAEngine).

Visual control area (VCA) is an integral part of the SCADA system. It applies to the client stations with
a view to providing accessible information about the object and to for the the issuance of the control actions
to the object. In various practical situations and conditions the VCA, based on different principles of
visualization may by applied. For example, this may be the library of widgets QT, GTK+, ~ wxWidgets or
hypertext mechanisms based technologies HTML, XHTML, XML, CSS, and JavaScript, or third-party
applications of visualization, realized in various programming languages Java, Python, etc. Any of these
principles has its advantages and disadvantages, the combination of which could become an insurmountable
obstacle to the use of VCA in a practical case. For example, technologies like the QT library can create
highly-reactive VCA, which will undoubtedly important for the operator station for control of technological
processes (TP). However, the need for installation of that client software in some cases may make using of
it impossible. On the other hand, Web-technology does not require installation on client systems and is
extremely multi-platform (it is enough to create a link to the Web-server at any Web-browser) that is most
important for various engineering and administrative stations, but the responsiveness and reliability of such
interfaces is lower that actually eliminates the using of them at the operator of the TP stations.

OpenSCADA system has extremely flexible architecture that allows you to create external interfaces,
including user and in any manner and for any taste. For example, the system configuration OpenSCADA as
now available as by means of the QT library, and also the Web-based.

At the same time creation of an independent implementation of the VCA in different basis may cause the
inability to use the configuration of one VCA into another one. That is inconvenient and limited from the
user side, as well as costly in terms of implementation and follow-up support. In order to avoid these
problems, as well as to create as soon as possible the full spectrum of different types of VCA проект
создания концепции СВУ is established. The result of this project — the direct visualization module
(based on the library QT), direct visualization module WebVision and VCA engine VCAEngine.

 1. Purpose
This module of the direct visualization of the VCA is designed for the formation and execution of VCA

interfaces among the graphic library QT.

The final version of the VCA module, built on the basis of this module, will provide:
• three levels of complexity in the formation of visualization interface which let organically to
develop and apply the tools of the methodology from simple to complex:

The module <Vision> of subsystems "User Interfaces" 523

http://wiki.oscada.org/HomePageEn/Doc/VCAEngine?v=1b0u
http://wiki.oscada.org/HomePageEn/Doc/WebVision?v=h86
http://wiki.oscada.org/Doc/KoncepcijaSredyVizualizacii?v=th4
http://wiki.oscada.org/Doc/KoncepcijaSredyVizualizacii?v=th4
http://wiki.oscada.org/HomePageEn/Doc/VCAEngine?v=1b0u
http://www.trolltech.com/qt

• formation from the template frames through the appointment of the dynamics (without the
graphical configuration);
• graphical formation of new frames through the use of already made visualization elements
from the library (mimic panel);
• formation of new frames, template frames of the visualization elements in the libraries.

• building of the visualization interfaces of various complexity, ranging from simple flat interfaces
of the monitoring and finishing with the full-fledged hierarchical interface used in SCADA systems;
• providing of the different ways of formation and configuration of the user interface, based on
different graphical interfaces (QT, Web, Java ...) and also through the standard management
interface of OpenSCADA system;
• change of dynamics in the process of execution;
• building of the new template frames on the user level and the formation of the frames libraries,
specialized for the area of application (eg the inclusion of frames of parameters, graphs and other
items linking them to each other) in accordance with the theory of secondary using and
accumulation;
• building of the new user elements of the visualization and the formation of the libraries of
frames,specialized for the area of application in accordance with the theory of secondary using and
accumulation;
• description of the logic of new template frames and user visualization elements as with the simple
links, and also with the laconic, a full-fledged programming language;
• the possibility of the inclusion of the functions(or frames of computing of the functions) of the
object model of OpenSCADA to the user elements of the visualization, actually linking the
presentation of the algorithm of computing (for example, by visualizing the library of models of
devices of TP for following visual modeling TP);
• separation of user interfaces and interfaces of visualization of data provides building the user
interface in a single environment, and performance of it in many others (QT, Web, Java ...);
• the possibility to connect to the performing interface for monitoring and corrective actions (for
example, while operator training and control in real time for his actions);
• Visual building of various schemes with the superposition of the logical links and the subsequent
centralized execution in the background (visual construction and performance of mathematical
models, logic circuits, relay circuits and other proceedings);
• providing of the the functions of the object API to the OpenSCADA system, it can be used to
control the properties of the visualization interface from the user procedures;
• building of the servers of frames, of elements of the visualization and of the project of the
interfaces of the visualization with the possibility to serve the great number of the client
connections;
• simple organization of client stations in different basis (QT, Web, Java ...) with the connection to
the central server;
• full mechanism of separation of privileges between the users which allows to create and execute
projects with the various rights of access to its components;
• adaptive formation of alarms and notifications, with the support of different ways of notification;
• support of the user formation of the palettes and font preferences for the visualization of the
interface;
• support of the user formation of maps of the events under the various items of equipment
management and user preferences;
• support for user profiles, allowing to define various properties of the visualization interface
(colors, font characteristics, the preferred maps of events);
• flexible storage and distribution of libraries of widgets, frames, and projects of the visualization
interfaces in the databases, supported by OpenSCADA; actually users need only to register the
database with data.

The module <Vision> of subsystems "User Interfaces" 524

 2. Tool of the graphical formation of the VCA interface
Development of the VCA interface is performed in a single window, realizing many documents interface

(MDI) interface (Fig. 2.a). This approach allows you to simultaneously edit multiple frames of various
sizes. The following mechanisms for managing the development are used: toolbars, menus and context
menus. Most actions are duplicated by different mechanisms, that allows you to quickly find the tool by the
preferred method. Navigational interfaces are implemented by the attached windows. Configuration if the
toolbars and attached windows is saved on exit and restored at startup that lets you to customize the
interface for yourself.

Fig.2.a. The window of the VCA interface development.

Access to major components of the VCA is made by attached windows, in the Figure 2.a these windows
are shown on the left side. These windows contain:

• Tree of the widget libraries. Using the navigator you can quickly find the needed widget or
library and to do with them necessary operations. The following operations are implemented: add,
delete, copy, settings of the widgets and libraries, as well as cleaning and visual editing of the
widget. For adaptive management the context menu is supported with the following items:

• "New library" — creation of the new library.
• "Add visual item" — adding of the visual element to the library.
• "Delete visual item" — deleting of the visual element from the library.
• "Visual item changes clear" — cleaning of the visual element with inheritance of
modified properties or setting them by default.
• "Visual item properties" — configuration of the visual element.
• "Visual item edit" — visual editing of the element.
• "Visual item cut" — cut/move of the visual element at the time of paste.
• "Visual item copy" — copy of the visual element at the time of paste.
• "Visual item paste" — paste of the visual element.
• "Load from DB" — uploading the data of the visual element from the database.
• "Save to DB" — saving data of visual element to the database.

The module <Vision> of subsystems "User Interfaces" 525

• "Refresh libraries" — performs rereading of the configuration and composition of the
libraries of the data model.

• The tree of pages of the project. Provides the mechanism for "Drag and drop" for creation of the
user frames based on the elements of libraries. In order to provide the adaptive management the
context menu is supported with the following items:

• "Run project execution" — starting of the execution of the chosen project.
• "New project" — creation of the new project.
• "Add visual item" — adding of the visual element to the project/page.
• "Delete visual item" — deleting of the visual element from the project/page.
• "Visual item changes clear" — cleaning of the visual element with inheritance of
modified properties or setting them by default.
• "Visual item properties" — configuration of the visual element.
• "Visual item edit" — visual editing of the element.
• "Visual item cut" — cut/move of the visual element at the time of paste.
• "Visual item copy" — copy of the visual element at the time of paste.
• "Visual item paste" — paste of the visual element.
• "Load from DB" — uploading the data of the visual element from the database.
• "Save to DB" — saving data of visual element to the database.
• "Refresh libraries" — performs rereading of the configuration and composition of the
libraries of the data model.

• attributes of widgets;
• external links of widgets.

In the main space of the working window the pages of projects, frames of the widgets' libraries, user
elements and elements of primitives at the time of their visual editing are placed.

At the top of the working window there is the menu. All the tools needed for development the VCA
interfaces are placed in the menu. Menu has the following structure:

• "File" — General operations.
• "Load from DB" — uploading the data of the visual element from the database.
• "Save to DB" — saving data of visual element to the database.
• "Close" — close the editor's window
• "Quit" — quit from the OpenSCADA system.

• "Edit" — Editing operations of the visual elements.
• "Make visual item changes UnDo" — make visual item last change undo.
• "Make visual item changes ReDo" — make repeat for visual item change.
• "Visual item cut" — cut/move of the visual element at the time of paste.
• "Visual item copy" — copy of the visual element at the time of paste.
• "Visual item paste" — paste of the visual element.

• "Project" — Operations over the projects.
• "Run project execution" — starting of the execution of the chosen project.
• "New project" — creation of the new project.
• "Add visual item" — adding of the visual element to the project.
• "Delete visual item" — deleting of the visual element from the project.
• "Visual item changes clear" — cleaning of the visual element with inheritance of
modified properties or setting them by default.
• "Visual item properties" — configuration of the visual element.
• "Visual item edit" — visual editing of the element.

• "Widget" — Operations over the widgets and the libraries of widgets.
• "New library" — creation of the new library.
• "Add visual item" — adding of the visual element to the library.
• "Delete visual item" — deleting of the visual element from the library.
• "Visual item changes clear" — cleaning of the visual element with inheritance of
modified properties or setting them by default.
• "Visual item properties" — configuration of the visual element.
• "Visual item edit" — visual editing of the element.
• "View" — Management of the arrangement of visual elements on the frame.

The module <Vision> of subsystems "User Interfaces" 526

• "Rise widget" — rising the widget to the top.
• "Lower widget" — lowering the widget to the very bottom.
• "Up widget" — to rise the widget above.
• "Down widget" — to lower the widget below.
• "Align to left" — alignment of the widget to the left.
• "Align to vertical center" — alignment of the widget vertically to the center.
• "Align to right" — alignment of the widget to the right.
• "Align to top" — alignment of the widget to the top.
• "Align to horizontal center" — horizontal alignment of the widget in the center.
• "Align to bottom" — alignment of the widget to the bottom.

• "Library: {Name of the library}" — menu items to access the frames/widgets in the
library.

• "Window" — Management of the windows of MDI-interface.
• "Close" — to close the active window.
• "Close all" — to close all the windows.
• "Tile" — to tile all the windows for visibility at the same time.
• "Cascade" — to cascade all the windows.
• "Next" — to activate the next window.
• "Previous" — to activate the previous window.
• "Widget: {Name of the widget}" — items of activation of the specific window.

• "View" — Management of the visibility of the working window and the toolbars on it.
• "Visual items toolbar" — visual element toolbar.
• "Widgets view functions" — the toolbar for management of the visibility and arrangement
of widgets on the panels.
• "Elementary figures tools" — Additional toolbar for the editing the primitive of
elementary figures ("ElFigure").
• "Projects" — attached window of management of projects' tree.
• "Widgets" — attached window of management of widgets' libraries tree.
• "Attributes" — attached window of the attributes' manager.
• "Links" — attached window of the links' manager.
• "Library: {Name of the library}" — management of the visibility of widgets' libraries
toolbars.

• "Help" — Help for OpenSCADA and fro Vision module.
• "About" — information about this module.
• "About QT" — Information about the QT library, used by this module.
• "What's this" — query of the description of the elements of the window's interface.

Above, under menu, or on the sides, there are the toolbars. Toolbars can be hidden or located, which is
controlled in the menu item "View". The following toolbars are present:

• "Visual items toolbar" — Management toolbar of the visual items:
• "Run project execution for selected item" — runs the project for execution and activates
the selected page of the project.
• "Load item data from DB" — uploading the data of the chosen elements from the
database.
• "Save item data to DB" — saving data of chosen elements to the database.
• "New project" — creation of the new project.
• "New library" — creation of the new library.
• "Add visual item" — adding of the visual element to the project.
• "Delete visual item" — deleting of the visual element from the project.
• "Visual item's properties" — configuration of the visual element.
• "Visual item edit" — visual editing of the element.
• "Make visual item changes UnDo" — make visual item last change undo.
• "Make visual item changes ReDo" — make repeat for visual item change.
• "Visual item cut" — cut/move of the visual element at the time of paste.
• "Visual item copy" — copy of the visual element at the time of paste.
• "Visual item paste" — paste of the visual element.

The module <Vision> of subsystems "User Interfaces" 527

• "Widgets view functions" — The toolbar of visibility and arrangement management of widgets
on the panels:

• "Rise widget" — rising the widget to the top.
• "Lower widget" — lowering the widget to the very bottom.
• "Up widget" — to rise the widget above.
• "Down widget" — to lower the widget below.
• "Align to left" — alignment of the widget to the left.
• "Align to vertical center" — alignment of the widget vertically to the center.
• "Align to right" — alignment of the widget to the right.
• "Align to top" — alignment of the widget to the top.
• "Align to horizontal center" — horizontal alignment of the widget in the center.
• "Align to bottom" — alignment of the widget to the bottom.

• "Elementary figure tools" — Additional toolbar of the editing of the elementary figures primitive
("ElFig").

• "Cursor" — return to the cursor for the action over the figures on the widget.
• "Add line" — adding the line to the elementary figure.
• "Add arc" — adding the arc to the elementary figure.
• "Add besier curve" — adding the Bézier curve to the elementary figure.
• "Connections" — the enabling of the of connections at the elementary figure.

• "Library: {Name of the library}" — Management of the visibility of toolbars of the widget
libraries. The contents of the panel depends on the contents of the library and includes call buttons
of the library items.
• "QTStarter toolbar" — The toolbar, created by the module of the module of starting the QT
library modules. It contains buttons to start the UI modules of OpenSCADA, based on the QT
Library. With this toolbar you can open multiple copies of the windows of the module or other
modules.

At the bottom of the development window of the VCA there is the status line. On the right side of the
status line there are indicators of the visual scale of the edited frame, of the mode of changing of the size of
the elements, of the mode of the current page of the of the VCA engine station and the user on whose behalf
the development of the VCA interface is done. By double-clicking on the indicator of the user it can be
changed the current user, enter the new username and password. In the main field of the status line it is
displayed various information and assistance messages.

The module <Vision> of subsystems "User Interfaces" 528

To edit the properties of the visual elements there are two dialogues. The first dialogue allows you to edit
the properties of containers of visual elements (widget libraries and projects), figure 2.b. The second
dialogue serves to edit the properties of the visual elements, Fig. 2.c. Changes, made in the dialogues, at
once, get to the VCA engine. To save these changes to the database or restore from the database it is
necessary to use the appropriate tools of the main development window.

Fig.2.b. Dialogue of the editing the properties of the containers of visual elements.

With the help of the main tab of that dialog you can set:
• The state of the elements' container, namely: "Enabled", the database container.
• Id, name and description of the container.
• For project: user, group of users and user access, users' group and all the rest.
• For the project: the period for calculating of the project and the mode of opening the windows in
the execution.

The module <Vision> of subsystems "User Interfaces" 529

Fig.2.c. Dialogue of editing the properties of visual elements.

With the help of the main tab of that dialog you can set:
• The state of element, namely: "Enabled", the parent widget.
• Id, root, path, name and description of the element.
• User, group of users of the element and user access, user groups and all the rest.

The module <Vision> of subsystems "User Interfaces" 530

Dialogue of editing the properties of the containers of visual elements contains two tabs: configuration
tab of the the main parameters (Fig.2.b) and the configuration tab of the mime-data of containers (Fig. 2.d).

Fig.2.d. Editing tab of the mime-data of the container of visual elements.

The module <Vision> of subsystems "User Interfaces" 531

Dialogue of the editing the properties of the visual elements contains four tabs: configuration tab of the
main parameters (Fig.2.b), the tab of attributes of the element (Fig. 2.e), the tab of the processing of the
element (Fig. 2.f) and the tab of links of the elements (Fig.2.g). At different levels of the hierarchy of visual
elements any tabs can be available, but some are not.

Fig.2.e. Attributes of the editing dialogue of the properties of the visual element tab.

The module <Vision> of subsystems "User Interfaces" 532

Fig.2.f. Processing tab of the dialogue of the editing the properties of the visual element.

Fig.2.g. Tab of links of the editing dialog of the properties of visual element.

The module <Vision> of subsystems "User Interfaces" 533

 2.1. Styles

It is known that people can have individual characteristics in the perception of graphical information. If
these features are not taken into account it is possible to get the rejection and exclusion of the user to the
VC interface. Such rejection and exclusion can lead to fatal errors in the management of TP, as well as
traumatize the human by the permanent working with the such interface. In SCADA systems it is accepted
the agreement, which regulate the requirements for establishing a unified VC interface which is normally
perceived by most of people. The people with some deviations are not taken into account.

To take this into account, and provide the ability to centrally and easily change the visual properties of
the interface, the project provides the implementation of visualization interface styles manager.

User can create many styles, each of which will hold the color, font and other properties of the elements
of the frame. A simple change of style will quickly transform the VC interface, and the possibility of
appointing an individual style to the user will take into account his individual characteristics.

To realize this opportunity, when you create a frame, it is necessary for the properties of color, font and
others set the «Config» (of the table if the «process» tab) in the value of «From style» (Fig. 2.f). And in the
parameter «Config template» to specify the identifier of the style field. Further, this field will automatically
appear in the Style Manager and will be there to change. Style Manager is available on the project
configuration page in the tab «Styles» (Fig. 2.1). On this tab you can create new styles, delete old ones,
change the field of the style and delete unnecessary.

Fig. 2.1. Styles tab of the configuration page of the project.

In general the styles are available from the project level. At the level of libraries of widgets you can only
define styles fields of widgets. At the project level, at the choice of style it is started the work with styles,
which includes access to the fields of styles instead of direct attribute values. In fact, this means that when
reading or writing a widget attribute these operations will be carried out with the corresponding field of the
chosen style.

When you run the project execution it will be used the set in the project style. Subsequently, the user can
select a style from the list of available ones. The user's style will be saved and used next time you run the
project.

The module <Vision> of subsystems "User Interfaces" 534

 2.2. Linkage with the dynamics

To provide relevant data in the visualization interface the data of subsystems "Data acquisition (DAQ)"
must be used. The nature of these data as follows:

1. parameters that contain some number of attributes;
2. attributes of the parameter can provide information of four types: Boolean, Integer, Real and
String;

3. attributes of the parameter can have their history (archive);
4. attributes of the parameter can be set to read, write, and with full access.

Considering the first paragraph it is necessary to allow the possibility of the group of destination links.
To do this we use the conception of of the logic level.

In accordance with paragraph 2, links provide transparent conversion of connection types and do not
require special configuration.

To satisfy the opportunities for access to archives, in accordance with paragraph 3, links make check of
the type of the attribute, and in the case of connection to the "Address", the address of linkage is put into the
value.

In terms of the VCA, the dynamic links and configuration of the dynamics are the one process, to
describe a configuration of which the tab "Processing" of the widgets is provided (Fig.2.f). The tab contains
a table of configuration of the properties of the attributes of the widget and the text of calculation procedure
of the widget.

In addition to configuration fields of the attributes the column "Processing" in the table is provided, for
selective using of the attributes of the widgets in the computational procedure of the widget, and the
columns "Configuration" and "Configuration template", to describe the configuration of links.

Column "Configuration" allows you to specify the linkage type for the attribute of the widget:
• Constant — in the tab of widget links the field for indication of a constant appears, for example
of the special color or header for the template frames;
• Input link — linkage with the dynamics for a read-only;
• Output link — linkage with the dynamics just for the record;
• Full link — complete linkage with dynamic (read/write).

Column "Configuration template" makes it possible to describe the groups of dynamic attributes. For
example it may be different types of parameters of subsystem "DAQ". Furthermore, in the case of correct
formation of this field, the mechanism of automatically assign of the attributes with the only indication of
the parameter of subsystem "DAQ" is working, which simplifies and accelerates the configuration process.
The value of this column has the following format: <Parameter>|<identifier>, where:

• <Parameter> — the group of the attribute;
• <Identifier> — identifier of the attribute, this value is compared with the attributes of the DAQ
parameters with automatic linkage, after the group link indication.

Installation of the links may be of several types, which are determined by the prefix:
• val: — Direct download of the value through the links mechanism. For example, link: "val:100"
loads in the attribute of the widget the value of the 100. It is often used in the case of absence of end
point of the link, in order to direct value indicating.
• prm: — Link to the attribute of the parameter or parameter, in general, for a group of attributes,
of subsystem "Data acquisition". For example, the link "prm:/LogicLev/experiment/Pi/var"
implements the access of the attribute of the widget to the attribute of the parameter of subsystem
"Data acquisition". Sign "(+)" at the end of the address signals about successful linking and presence
of the target.
• wdg: — Link to an attribute of another widget or a widget, in general, for a group of attributes.
For example, the link "wdg:/ses_AGLKS/pg_so/pg_1/pg_ggraph/pg_1/a_bordColor" implements
the access of the attribute of one widget to the attribute of another one. At that moment this type of
link is not intended for installation by the user manually, and is installed automatically in the mode
of dynamic linkage!

The module <Vision> of subsystems "User Interfaces" 535

http://wiki.oscada.org/Doc/DAQ?v=11z2

Processing of the links occurs at a frequency of calculating the widget in the following order:
• Receiving of the data from input links.
• The implementation of calculating of the script.
• Transmission of the values by the output links.

Fig. 2.g presents the tab with the possibility of group and individual assignment of attributes.

When the widget that contains the configuration of links is placed to the container of widgets, all links of
the source widget is added to the list of resulting links of the widgets' container.

The aforesaid shows that the links are set by the user in the configuration interface. However, for the
possibility of creation of the frames for general use, with the function of providing detailed data of various
sources of the same type, a dynamic linkage mechanism is necessary. Such an mechanism is provided
through a reserved key identifier "<page>" of the group of attributes of links in the frames of general
purpose and dynamic linkage with the identifier "<page>" in the process of opening of the frame of general
purpose by means of the signal from another widget.

Lets examine the example when we have the frame of general-purpose "Control panel of graph" and a lot
of "Graphs" in different tabs. "Control panel of graph" has links with the templates:

• tSek -> "<page>|tSek"
• tSize -> "<page>|tSize"
• trcPer -> "<page>|trcPer"
• valArch -> "<page>|valArch"

At the same time, each widget "Graph" has the attributes tSek, tSize, trcPer and valArch. In the case of a
calling of the opening signal of "Control panel of graph" from any widget "Graph" it is happening the
linkage of the attributes of the "Control panel of graph" in accordance with the attribute specified in the
template with the attribute of the widget "Graph". As a result, all changes in the "Control panel of graph"
will be displayed on the graph by means of the link.

In the case of presence of external links to the parameters of subsystem "Data acquisition" in the widget
"Graph", the links of "Control panel of graph" will be installed on an external source. In addition, if in the
"Control panel of graph" will be declared the links to the missing attributes directly in the widget "Graph",
it will be made the search for the availability of such attributes from an external source, the first to which
the link is directed, performing, thus, the addition of missing links.

To visualize this mechanism the table 2.2 is cited.

Table 2.2. The mechanism of the dynamic linkage.
Attributes of the "Control panel

of graph" (the template of
dynamic linkage)

"Graph"
attributes

Attributes of an
external

"Parameter"

The resulting link or an
value of the linking

attribute

tSek (<page>|tSek) tSek - "Graph".tSek

tSize (<page>|tSize) tSize - "Graph".tSize

trcPer (<page>|trcPer) trcPer - "Graph".trcPer

valArch (<page>|valArch) valArch - "Graph".valArch

var (<page>|var) var var "Parameter".var

ed (<page>|ed) - ed "Parameter".ed

max (<page>|max) - - EVAL

min (<page>|min) - - EVAL

The module <Vision> of subsystems "User Interfaces" 536

 3. Execution of the VCA interfaces
Execution of the VCA interface is to run a new project session or connect to the existing one on the level

of VCA engine. Then the module of direct visualization represents and manages the data of the session. The
main window mode of execution mode of this module has the form presented at Fig.3.

Update of the contents of the open pages of the visualization interface with the frequency of the project
session execution. In the updating process it is performed:

• request a list of opened pages, with a sign of page modification, at the model and consistency
checking of the actually opened pages to that list;
• request of the branch of the modified pages;
• update of the contents of the modified pages and their widgets, in accordance with the received
modified data.

At the closure of "RunTime" window closing of the session of the project is done in the VCA engine.

The mechanism of the request of the only modified data is based on an absolute counter of the session
execution. If you want to make real changes in the attributes of widgets the memorizing of the value of this
counter is done, which allows the identification of modified attributes. This approach can increase
productivity and reduce the load on network sharing in the case of access to the VCA engine via network.

Hierarchically the module provides an opportunity to accommodate the project pages in the main
execution window (Fig.3), as well as putting them inside of the container widgets, as well as by the opening
of additional windows over the main.

When you expand the main execution window, or when moving to the full-screen mode the scaling of
the page content of the VCA interface is done, filling the entire space of the window and allowing to
execute the projects, developed on one screen resolution, at different resolutions.

The main window consists of menu (top) status line (bottom), and the executable contents of the session
between them. Menu in the execution mode is positioned as the OpenSCADA administrator tool,
containing the self-system functions and it is available only to privileged users, occupying the group "root".
Menu has the following structure:

• "File" — General operations.
• "Print" — Print:

• "Page" — page of the user interface;
• "Diagram" — diagram on the user interface;
• "Document" — document on the user interface.

• "Export" — Export:
• "Page" — page of the user interface;
• "Diagram" — diagram on the user interface;
• "Document" — document on the user interface.

• "Close" — Close the editor window.
• "Quit" — Quit from the OpenSCADA system.

• "Alarm" — Alarm quittance:
• "Alarm level" — all alarms;
• "Light alarm" — lighting notification;
• "Speaker alarm" — notification with the whistle;
• "Sound/speech alarm" — sound/speech notivication.

• "View" — Display options of the project session.
• "Full screen" — Switcher of the full screen execution mode.

• "Help" — Help through the OpenSCADA and Vision module.
• "About" — Information about this module.
• "About QT" — Information about the QT library, used by the module.

On the right side of the status line the indicators of the time, the current VCA engine station and users on
whose behalf the VCA interface is executed, as well as the panel with the alarm quittance buttons, print and
export. By double-clicking on the indicator of the user it can be changed by the typing of the new username

The module <Vision> of subsystems "User Interfaces" 537

and password, and by clicking on the quittance button — to quit alarms completely or only the desired
notification. In the main field of the status line various messages and assistance messages are displayed.

Fig.3. The main window if the execution mode.

The module <Vision> of subsystems "User Interfaces" 538

 4. Сonception of basic elements (primitives)
In this version of that module not all the primitives' images of this project are implemented. In general

the project provides the following primitives:

Id Name Purpose

ElFigure Elementary graphic
figures

Primitive is the basis for drawing basic graphic shapes with their
possible combinations in the single object.The support of the
following elementary figures is provided:

• Line.
• Arc.
• Bézier curve.
• Fill of the closed circuit.

For all figures contained in the widget common properties of
thickness, color, etc. are set, but this does not exclude the
possibility of indicating of aforenamed attributes specific to each
figure separately.

FormEl Form elements.

Includes support of standard form components:
• Line edit.
• Text edit.
• Check box.
• Button.
• Combo box.
• List.
• Slider.
• Scroll bar.

Text Text
Text element(labels). It is characterized by the type of font, color,
orientation and alignment.

Media Media

Element of representation of raster and vector images of various
formats, playback of the animated images, playback of audio
segments and view of video segments. Perhaps it will be useful to
include the OpenGL support for it!

Diagram Diagram

Element of the diagram with the support of the possibility of
displaying multiple streams of trends and different modes of
display, from minimalist to full, two-, three-dimensional, circular,
etc.

Protocol Protocol
Element of the protocol, visualizer of the system messages, with
support for multiple operating modes with the different sizes and
settings

Document Document
The element of generating the reports, journals and other
documentation on the basis of specified data.

Function
Function of API of the
object model of
OpenSCADA

Not visual, on the side of execution, widget which allows to include
a computing function of the object model of OpenSCADA in the
VCA.

Box Box
Contains the mechanism fro other widgets placement with the
purpose of creation of new, more complex widgets and pages of
final visualization.

Lets examine the implementation of each primitive.

The module <Vision> of subsystems "User Interfaces" 539

 4.1. Elementary figure primitive (ElFigure)

Support of the following elementary figures is provided: lines, elliptical arcs, Bézier curves and fill of
the closed circuit with the color and/or image. For the elementary figures the following operations are
provided:

• creation/deleting of the figures;
• copying of the figure(s);
• moving and resizing of the figures by mouse and keyboard;
• possibility to connect the elementary figures to each other, getting more complex figures, for
which all the properties of the source elementary figures are available;
• possibility of simultaneous movement of several figures;
• fill of the closed circuit with the color and/or image;
• generation of mouse key events at the time of the mouse-click on the filled spaces;
• scaling;
• rotation.

Fig. 4.1 shows a part of the screen with a frame containing the elementary figures.

Fig.4.1. Realization of elementary figures in the Vision.

The figures underlying this widget, containing the points (the start and end ones) that can be connected
with the according points of other figures; and the points with the help of which the geometry of the figure
can be changed.

It is possible to add the figure using the mouse:
1. Select the desired figure from the context menu.
2. Set with the left mouse-button start and end points (for line with the SHIFT key hold its
orthogonal drawing is made).

The deleting of the figure(s) it is possible by pressing "Del", having selected figure(s).

The copying of the figure(s) it is possible by pressing keys "Ctrl"+"C", having selected figure(s).

Moving/resizing of the figure it is possible by using the mouse or keyboard:
1. Select the figure, by clicking on it with the left mouse button.
2. Drag (with the help of mouse or control keys) the figure or one of its control points in the desired
location and release the mouse button (key).

It is possible to move several figures, selected by means of holding "Ctrl" and clicking on the desired
figures (this option works when the button Connections (Connections) is disabled) or by mouse selection.

The connection of the figures with each other it is possible by the following way:
1. Press the Connections button.

The module <Vision> of subsystems "User Interfaces" 540

2. Select one of the figures and move its start or end point to the desired start or end point of the
other figure so that it will get to the appeared circle, release the left mouse button. Connected figures
are moving as well as the individual, the general point is moved for all connected figures, to which
it refers(priority is given to the arc, two arcs can't be connected directly with each other).

To fill the closed circuit from the figures it is possible with the following way:
1. Press the Connections button.
2. Create the closed circuit.
3. Make the double-click of the left mouse button inside of it.

To delete the fill of the closed circuit it is possible from the context menu of the widget; by braking the
closed circuit or by double-click of the left mouse button on the already existing filled space.

Rotation of the figure is made around the center of the widget.

 4.2. Text primitive (Text)

Support of the text element with the following properties is provided:
• Font with the properties: type/class of the font, size, bold, italic, strikeout and underline.
• Text color.
• Text orientation.
• Automatic word wrap.
• Alignment of the text horizontally and vertically with all options..
• Displaying the background as the color and/or image.
• Display the border around the text, with the specified color, width and style.
• Formation of the text from the attributes of different types and properties.

Fig. 4.2 represents a part of the screen with the frame containing the text examples using various
parameters.

Fig.4.2. Realization of the basic text element in the Vision.

The module <Vision> of subsystems "User Interfaces" 541

 4.3. Primitive of the form element (FormEl)

Support of the form elements on the VCA frames is provided. The following form elements are included:
Line edit — It is represented by the following types: "Text", "Combo", "Integer", "Real", "Time",

"Date", "Date and time". All kinds of line editor support the confirmation of entry.
Text edit — It is the flat-text editor with the confirmation or denial of entry.
Check box — Provides a field of binary flag.
Button — Provides the button with the support of: the color of the button, the image of the button, and

mode of fixation.
Combo box — Provides the selection field of the element from the list of the items.
List — Provides the list box with the control of the current element.
Slider — Slider element.
Scroll bar — Strip of the scroll bar.

The following modes are realized: «Enable» and «Active», as well as transfer of changes and events to
the data model of the VCA (engine).

Fig. 4.3 represents a part of the screen with the frame containing the above-listed elements of the form.

Fig.4.3. Realization of the form elements in the Vision.

The module <Vision> of subsystems "User Interfaces" 542

 4.4. Primitive of the displaying the media materials (Media)

Support of the element of the displaying of media materials with the following properties is provided:
• The indication of the source of media data (images or video material).
• View of the images of most well-known formats with the possibility of inscribing of it in the size
of the widget.
• Playback of the simple animated images and video formats with the possibility to control the
playback speed.
• Full format video and audio playing by Phonon.
• Displaying of the the background as a color and/or image.
• Display the border around the text, with the specified color, width and style.
• Formation of the active areas and generating the events when they are activated.

Fig. 4.4 represents a part of the screen with the frame containing examples of viewing/playback of media
data.

Fig.4.4. Realization of the basic element of the displaying of media materials in the Vision.

The module <Vision> of subsystems "User Interfaces" 543

http://en.wikipedia.org/wiki/Phonon

 4.5. Primitive of the construction of diagrams/graphs (Diagram)

Support of the element of the construction of diagrams/graphs with the following properties is provided:
• Construction of graphs/trends:

• Construction graph for: archive data, current data and the formation of an intermediate
buffer for the display of the parameters without archive.
• Construction of a single graphs with the value of the parameter on the ordinate axis, and
the combined graphs of up to 10 parameters, with the percentage scale.
• Ability to adapt the parameter's graph to the value, the regrowth of scale.
• Wide range of scalability and adaptation of the horizontal scale, with automatic averaging
at the server level and the primitive itself.
• Ability to display the size grid and markers on the horizontal and vertical, with adaptation
to the displaying range.
• Support of the active mode, with the cursor and getting values under the cursor.

Fig. 4.5 represents a part of the screen with the frame containing examples of the trend-diagrams.

Fig.4.5. Realization of the basic element of a diagram-trend displaying in the Vision.

 4.6. Primitive of the protocol formation (Protocol)

Support of the element of the formation of the protocol with the following properties is provided:
• Formation of the protocol from the archive of messages for the specified time and depth.
• Request of the data from the messages archivers.
• Selection of data from the archives by the level of importance and the category of messages
template.
• Support the tracking mode for the appearance of messages in the archive of messages.

Fig. 4.6 represents a part of the screen with the frame containing an example of the protocol.

Fig.4.6. Realization of the basic element of a protocol displaying in the Vision.

The module <Vision> of subsystems "User Interfaces" 544

 4.7. Primitive of the report formation (Document)

Support element of the report formation with the following properties is provided:
• Adaptive formation of a document structure based on Hypertext Markup Language. This provides
support for the broad features of formatting of the documents.
• Formation of the documents on command or on schedule. It is necessary for creation of reports
into the archive and then view the archive.
• Formation of a document in real time mode. It is necessary to form documents completely
dynamically, and based on the archives for the specified time.
• Using of the the attributes of the widget for transmission of values and addresses to the archives
in the report. It allows you to use the widget of the document as a template when generating reports
with other input data.

The basis of any document is XHTML-template. XHTML-template is the tag "body" of the WEB-page
which contains the document's static in the standard XHTML 1.0 and elements of the executable
instructions in one of the languages of the user programming of OpenSCADA in the form of <?dp
{procedure} ?>. The resulting document is formed by the execution of procedures and insert of their result
into the document.

The source for values of the executable instructions are the attributes of the widget of the primitive, as
well as all the mechanisms of the user programming language. Attributes may be added by the user and
they can be linked to the actual attributes or parameters or they can be autonomous, values of which will be
formed in the script of the widget. In the case of linked attributes the values can be extracted from the
history, archive.

Fig. 4.7 shows the frame containing a sample of the document.

Fig.4.7. Implementation of the basic visualization element of the report documentation in the Vision.

The module <Vision> of subsystems "User Interfaces" 545

 4.8. Primitive of the box container (Box)

Support of the primitive of the container concurrently serves as the project pages is provided. This
primitive is the only element-container, which may include links to frames from the library, thereby
creating the user elements of desired configuration. Primitive implements the provided by the project
properties. The properties of this primitive are:

Container — Allows you to form the desired objects by grouping in the limits of the primitive.
Page — Elements constructed on the basis of the primitive may serve as a page of user interface.
Container of pages — Property of substitution of its own contents by another page in the execution

process. Used to create frames on the pages of user interface. For example, the main page of
traditional SCADA system with alarm objects is constructed in this way.

Background — Supports ability to specify the background as color or image.
Border — Supports the displaying of the border, with the specified color, width and style.

Example of editing of the frame, based on the primitive, is shown in Fig. 2.a, and Fig. 3 shows a page
containing the container of the pages, built on the basis of the primitive.

The module <Vision> of subsystems "User Interfaces" 546

 5. Vector graphics editor.

 5.1. Purpose

The presence of own vector graphics editor is an integral part of self-respecting SCADA system.
Experience shows that the most informative form of technological process presentation is a mnemonic
schemes — a set of alarm devices, images of the equipment, and internal connections of the controlled
object, running on a PC (operator's station). To create them, you can use any of the existing graphical
editors. However, thus obtained the mnemonic schemes are static and do not reflect the dynamics of
changes in the characteristics of the process and, consequently, they are inadequate and uncomfortable for
perception. Thus, one of the tasks facing the developers of SCADA systems is the creation of a graphical
editor for creation (painting) the objects, whose characteristics can be dynamically changed.

 5.2. Principles and functions of the graphic editor

The basis of the described editor are three graphic primitives: line, arc, Bézier curve. The dynamically
changing the characteristics of these primitives are:

• Coordinates of control points; they are used to define the shape of the line, arc or Bézier curve.
The line has two control points, the arc — 5 control points, Bézier curve — 4 (Fig. 5.2.a).
• Line width.
• Border width.
• Border color.
• Line style.

Fig. 5.2.a. Control points of the line, arcs and Bézier curve.

Examples of primitives of different colors, widths, styles with borders or without ones are shown in Fig.
5.2.b.

Fig. 5.2.b. Examples of primitives: line, arc and Bézier curve from left to right.

The module <Vision> of subsystems "User Interfaces" 547

It is possible to connect the various graphic primitives for creation of complex graphic objects. If the
connected primitives make the closed circuit, it can be filled with color and/or image (Fig. 5.2.c).

Fig. 5.2.c. Fills of the closed circuit with the colors and/or images.

Graphics editor allows you to zoom and rotate the figures (primitives and complex graphic objects) (Fig.
5.2.d).

The features of the editor also include the selection, moving, copying and deleting the figures.

Fig. 5.2.d. Zoom and rotate the figures.

The module <Vision> of subsystems "User Interfaces" 548

 5.3. Basic principles of operation in the graphic editor

To get to work with a graphical editor after the OpenSCADA is started it is necessary to call "Operation
user interface". The "Widgets" tab contains a list of existing graphic libraries and their elements.

Lets suppose that we need to add a graphic element to the one of the existing libraries. To do this, select

the name of the library, and click the () on the toolbar. In the appeared window enter the ID and name

of the new graphic element. After that lets select the created item and click () button. The drawing area
will appear on the right. By double-clicking on that field or either using the context menu lets enter the
editing mode - the mode of the graphical editor that allows you to perform all provided manipulations with
the figures. At a time when we have the created graphic element in focus, the "Attributes" tab takes the
form, shown in Fig. 5.3.a.

Fig. 5.3.a. Attributes of elementary figure.

With the help of mouse or the "Geometry " field of the "Attributes" tab lets define the drawing area size
and scale coefficients.

Using the "Line" field of the "Attributes" tab, lets define the width, color, lines' style of the figures which
we'll draw. With the "Border" field lets define the width and color of the border. The "Fill" field allows you
to specify color, and image for the fills. "Elements' list" contains a list of primitives used to create the
graphic object. Elements of all fields of the "Attributes" tab can be dynamically changed in the scripts
(programs) of the user.

Graphics primitives can be drawn with the mouse or by specifying the list of graphical primitives
("Elements' list"). In the first case, the coordinates of control points of the primitive are computed
automatically, width, color, style of the line, width and color of the border are set by defaults from the
"Attributes" tab. In the second case, the primitive must be described in the "Elements' list" as follows:

line:(x1|y1):(x2|y2):width:color:border_width:border_color:style (1)
arc:(x1|y1):(x2|y2):(x3|y3):(x4|y4):(x5|y5):width:color:border_width:border_color:style (2)
bezier:(x1|y1):(x2|y2):(x3|y3):(x4|y4):width:color:border_width:border_color:style, (3)

The module <Vision> of subsystems "User Interfaces" 549

Where:
(x1|y1) — first control point's coordinates of the primitive;
(x2|y2) — second control point's coordinates of the primitive;
(x3|y3) — third control point's coordinates of the primitive;
(x4|y4) — fourth control point's coordinates of the primitive;
(x5|y5) — fifth control point's coordinates of the primitive;
width — line width, with which the primitive will be drawn;
color — line color, with which the primitive will be drawn;
border_width — border width;
border_color — border color;
style — line style ("0" — solid, "1" — dashed, "2" — dotted).

The priority values are the width, color, style of the line, width and color of the border, specified in the
"Elements' list". If you want to use any of the properties that are set in the fields "Line" or "Border" of the
"Attributes" tab, then during the description of the primitive they should be skipped. For example, we want
to create a line with a width of 3, red color, solid and without border. At the same time in the "Line" field
the following properties are set: the line width — 3, black color of the line, solid line style, and in the
"Border" field — the width of the border — 5, border's color — green. Then the description of the primitive
in the "Elements' list " will be as follows:

line:(x1|y1):(x2|y2)::red:0:: (4)

Expressions (1) - (4) define the static properties of the primitives that can not be changed by user's
program. To specify the dynamic properties it is necessary to use the following expression:

line:1:2:w1:c1:w2:c2:s1 (5)

Then the "Attributes" tab will be appended by the fields: Point 1 (1), Point 2 (2), Width 1(w1), Width
2(w2), Color 1(c1), Color 2(c2), Style 1 (s1) (Fig. 5.3.b), values of these fields can be changed
programmatically, by using a programming language of the OpenSCADA project. It is obvious that if
desired not all properties of the primitive can be declared dynamic, but one or several, besides one dynamic
property can be used repeatedly.

Editing the coordinates of control points is made either with the mouse or through changes in the
"Elements' list " for static points, or directly in the "Attributes" tab, having the dynamic ones ("Point 1"...).
Editing the other properties is made by means of changing the contents of the fields "Line", "Border", "Fill"
of the "Attributes" tab or the "Elements' list".

Fig. 5.3.b. Dynamic attributes of elementary figure.

The module <Vision> of subsystems "User Interfaces" 550

There is the possibility of selection (left click on the figure) the primitive, the joint selection of
primitives (left mouse button + "Ctrl" key pressed having disabled the "Connections" button), a joint
selection by the frame, drawn by holding down the left mouse button; moving them (keyboard/mouse);
copy and paste («Ctrl» + «C», «Ctrl» + «V» or from the popup menu); delete («Del»).

To connect the primitives with each other it is necessary:
• 1) push the "Connections" button;
• 2) select one of the figures and move its start or end point to the desired start or end point of the
other figure so that it will get to the appeared circle. Connected figures are moving as well as the
individual ones, the general point is moved for all connected figures, to which it refers(priority is
given to the arc, two arcs can't be connected directly with each other).
• 3) release the left mouse button.

To fill the closed circuit it is necessary to make double click of the left mouse button inside it or you can
specify a fill in the "Elements' list" as follows:

fill:(x1:y1):(x2:y2):...:(xn:yn):color:image – (statics);
fill:1:2:3:...:c1:i1 – (dynamics).

Where:
(x1:y1):(x2:y2):...:(xn:yn) - coordinates of the start/end points of the primitives that form a closed

circuit;
color - fill color;
image - fill image.

The priority values are the color and image of the fill, set in the "Elements' list. " If you want to use the
properties set in the "Fill" field of the "Attributes" tab, then they should be skipped in the description of the
primitive.

To scale the figures it is necessary in the "Geometry" field to set the scale the for the "X" and "Y" axes.
In addition, there is the ability to visually zoom in/out the widget without changing the scale in the
"Geometry" field. You must exit the editing mode by the right click on the widget field, select in the popup
menu "Zoom in (+10%)"/"Zoom out (-10%)", or rotate the mouse wheel while holding the "Ctrl" key
pressed. Exit the editing mode is made either by pressing the "Esc", or using the popup menu of the widget.

It is possible to rotate the contents of the widget. To rotate the created objects you should set the
"Orientation angle" from -360 to 360 in the "Attributes" tab.

Graphical editor supports color transparency, defined as follows: color-t, where the color - the color
itself, and t - transparency from 0 (fully transparent) to 255 (opaque).

The module <Vision> of subsystems "User Interfaces" 551

 5.4. Popup menu of the graphic editor

The popup menu by the right-clicking in the editable widget is provided. Depending on what an object is
under the mouse popup menu can take several different forms. Below, in Figure 5.4, there are examples of
the popup menu.

Fig. 5.4. The popup menu for the lines (line, arc, Bézier curve) and for the fill from left to right.

The popup menu includes the following sections (from top to bottom):
• drawing section, allows you to select the figure to paint, the "bindings" mode by the
"Connections" item and to return to selection mode - "Cursor";
• undo/redo section;
• copy/paste the selected figures section;
• rising/lowering the selected figures along "Z" section;
• control section (to make static or dynamic) different properties of primitives and also for the call
the properties dialog of the elementary figure;
• exit the editing mode section.

The module <Vision> of subsystems "User Interfaces" 552

 5.5. Properties dialog of the elementary figure

Dialog, versions of which are shown in Figures 5.5.a, 5.5.b, 5.5.c, is implemented for interactive and
comfortable user control of the properties of the figure(s).

Fig. 5.5.a. Elementary figure's properties dialog for single figure (line, arc or a Bézier curve).

The module <Vision> of subsystems "User Interfaces" 553

Fig. 5.5.b. Elementary figure's properties dialog for the group of selected figures.

Fig. 5.5.c. Elementary figure's properties dialog for the fill.

As can be seen from the figures above, the dialog can be of three different forms, depending on the
object for which it is called. In the title of the dialog there are the numbers of figures, for which it is called.
These numbers correspond to the positions of figures in the "Elements' list", starting from the top.

If the dialog called for a single figure (line, arc or a Bézier curve), then it is possible to edit the points'
coordinates of the figure (Fig. 5.5.a). If the point is connected to the point of another figure or figures, and
"bindings" ("Connections") are enabled, then entered coordinates will be applied to all connected figures
and fills, which involved the figure, will be redrawn accordingly.

If the dialog is called for the group of selected figures (Fig. 5.5.b), properties (attributes) listed in the
dialog will be applied to all figures listed in the title of the dialog. When you call the dialog in the fields of
the properties will be shown the data of the figure from the group of selected ones, for which it was called
the popup menu. There is the possibility to include/exclude certain properties of the dialog. For this the (

) button is provided. In the case of exclusion of individual properties, they will not be processed upon
acceptation of the dialog ("Ok" button). After the acceptation of the dialog, all of the data of the included
properties will be applied to the whole group of figures.

Dialog for the fill's properties (Fig. 5.5.c) allows you to manage the properties of the specific fill.

When selecting a check box to the right of a property, it (the property) after the acceptation of the dialog
is set to the default value, which is listed in the "Attributes" tab. The "Dyn/Stat" buttons make the
appropriate properties dynamic or static.

The module <Vision> of subsystems "User Interfaces" 554

 6. The overall configuration of the module
To adjust your own behavior in not obvious situations the module provides the ability to customize

individual settings through the management interface of the OpenSCADA (Fig. 6.a). These settings are:
• Module Status: runing and the number of available screens in the library of QT4.
• The name of the remote OpenSCADA station with visualization engine VCA.
• Initial user of the configurator — points on behalf of what user to open configurator without
requiring the password.
• The lifetime of the pages in the cache. Visualizer provides acceleration of the user interface by
placing a previously opened pages in the cache, to control the lifespan of pages in which the
property and intended. Specifying a value of zero generally excludes cleaning the cache.
• The list of projects, by separate symbol ';', for their automatic execution with the launch of the
module. To provide the possibility to indicate the opening of the window of the project execution on
the desired display of many display systems the recording format of the project "PrjName-1" is
provided, where 1 — the number of the target display.
• The link to the configuration page of the external OpenSCADA stations.

Fig.6. The configuration page of the module.

The module <Vision> of subsystems "User Interfaces" 555

Setting for processing of alarms can be made in the "Alarms" tab (Fig. 6.b). In this tab you can specify a
string of command to play audio files, usually a "play-q %f".

Fig.6.b. Tab "Alarms" of the configuration page of the module.

The module <Vision> of subsystems "User Interfaces" 556

The module <WebVision> of subsystems “User
Interfaces”

Module: WebVision
Name: Operation user interface (WEB)
Type: User interfaces
Source: ui_WebVision.so
Version: 1.0.1
Author: Roman Savochenko
Developers: Roman Savochenko, Maxim Lysenko, Ksenia Yashina
Translated: Maxim Lysenko
Description: Web visual user interface for the project execution of visual control area (VCA).
License: GPL

WebVision module provides a mechanism of the final visualization of the visual control area (VCA) in
the OpenSCADA system. The module is based on WEB technologies (XHTML, JavaScript, CSS, AJAX).
In its work, the module uses the data from the VCA engine (module VCAEngine).

Visual control area (VCA) is an integral part of the SCADA system. It applies to the client stations with
a view to providing accessible information about the object and to for the the issuance of the control actions
to the object. In various practical situations and conditions the VCA, based on different principles of
visualization may by applied. For example, this may be the library of widgets QT, GTK+, ~ wxWidgets or
hypertext mechanisms based technologies HTML, XHTML, XML, CSS, and JavaScript, or third-party
applications of visualization, realized in various programming languages Java, Python, etc. Any of these
principles has its advantages and disadvantages, the combination of which could become an insurmountable
obstacle to the use of VCA in a practical case. For example, technologies like the QT library can create
highly-reactive VCA, which will undoubtedly important for the operator station for control of technological
processes (TP). However, the need for installation of that client software in some cases may make using of
it impossible. On the other hand, Web-technology does not require installation on client systems and is
extremely multi-platform (it is enough to create a link to the Web-server at any Web-browser) that is most
important for various engineering and administrative stations, but the responsiveness and reliability of such
interfaces is lower that actually eliminates the using of them at the operator of the TP stations.

OpenSCADA system has extremely flexible architecture that allows you to create external interfaces,
including user and in any manner and for any taste. For example, the system configuration OpenSCADA as
now available as by means of the QT library, and also the Web-based.

At the same time creation of an independent implementation of the VCA in different basis may cause the
inability to use the configuration of one VCA into another one. That is inconvenient and limited from the
user side, as well as costly in terms of implementation and follow-up support. In order to avoid these
problems, as well as to create as soon as possible the full spectrum of different types of VCA проект
создания концепции СВУ is established. The result of this project - the direct visualization module based
on the WEB technologies, the direct visualization module Vision and VCA engine VCAEngine.

 1. Purpose
This module of the direct visualization of the VCA serves only for the execution of interfaces of the

VCA in the area of WEB-technologies.

The user interface is formed in the WEB-browser, by reference to the WEB-server and receiving from it
XHTML-document over HTTP. In this case, the WEB-server — OpenSCADA system, which supports
standard communication mechanisms of the TCP-networks (module Transport.Sockets), hypertext transfer
protocol (module Protocol.HTTP), as well as encryption of traffic between the browser and the server

The module <WebVision> of subsystems “User Interfaces” 557

http://wiki.oscada.org/HomePageEn/Doc/VCAEngine?v=1djh
http://wiki.oscada.org/HomePageEn/Doc/Vision?v=fld
http://wiki.oscada.org/Doc/KoncepcijaSredyVizualizacii?v=fcd
http://wiki.oscada.org/Doc/KoncepcijaSredyVizualizacii?v=fcd
http://wiki.oscada.org/HomePageEn/Doc/VCAEngine?v=1djh

(Transport.SSL). On this basis, to gain access to the user interface provided by this module, you need to
configure the transport in the OpenSCADA (Transport.Sockets or Transport.SSL) in conjunction with the
protocol HTTP (Protocol.HTTP). In the delivery of the OpenSCADA system there are configuration files
containing settings of the Transport.Sockets for ports 10002 and 10004. Consequently, the interface of the
module in the default configuration of the OpenSCADA will be available at URL: http://localhost:10002 or
http://localhost:10004.

The final version of the VCA module, built on the basis of this module, will provide:
• three levels of complexity in the formation of visualization interface which let organically to
develop and apply the tools of the methodology from simple to complex:

• formation from the template frames through the appointment of the dynamics (without the
graphical configuration);
• graphical formation of new frames through the use of already made visualization elements
from the library (mimic panel);
• formation of new frames, template frames of the visualization elements in the libraries.

• building of the visualization interfaces of various complexity, ranging from simple flat interfaces
of the monitoring and finishing with the full-fledged hierarchical interface used in SCADA systems;
• providing of the different ways of formation and configuration of the user interface, based on
different graphical interfaces (QT, Web, Java ...) and also through the standard management
interface of OpenSCADA system;
• change of dynamics in the process of execution;
• building of the new template frames on the user level and the formation of the frames libraries,
specialized for the area of application (eg the inclusion of frames of parameters, graphs and other
items linking them to each other) in accordance with the theory of secondary using and
accumulation;
• building of the new user elements of the visualization and the formation of the libraries of
frames,specialized for the area of application in accordance with the theory of secondary using and
accumulation;
• description of the logic of new template frames and user visualization elements as with the simple
links, and also with the laconic, a full-fledged programming language;
• the possibility of the inclusion of the functions(or frames of computing of the functions) of the
object model of OpenSCADA to the user elements of the visualization, actually linking the
presentation of the algorithm of computing (for example, by visualizing the library of models of
devices of TP for following visual modeling TP);
• separation of user interfaces and interfaces of visualization of data provides building the user
interface in a single environment, and performance of it in many others (QT, Web, Java ...);
• the possibility to connect to the performing interface for monitoring and corrective actions (for
example, while operator training and control in real time for his actions);
• Visual building of various schemes with the superposition of the logical links and the subsequent
centralized execution in the background (visual construction and performance of mathematical
models, logic circuits, relay circuits and other proceedings);
• providing of the the functions of the object API to the OpenSCADA system, it can be used to
control the properties of the visualization interface from the user procedures;
• building of the servers of frames, of elements of the visualization and of the project of the
interfaces of the visualization with the possibility to serve the great number of the client
connections;
• simple organization of client stations in different basis (QT, Web, Java ...) with the connection to
the central server;
• full mechanism of separation of privileges between the users which allows to create and execute
projects with the various rights of access to its components;
• adaptive formation of alarms and notifications, with the support of different ways of notification;
• support of the user formation of the palettes and font preferences for the visualization of the
interface;
• support of the user formation of maps of the events under the various items of equipment
management and user preferences;

The module <WebVision> of subsystems “User Interfaces” 558

http://localhost:10004/
http://localhost:10002/

• support for user profiles, allowing to define various properties of the visualization interface
(colors, font characteristics, the preferred maps of events);
• flexible storage and distribution of libraries of widgets, frames, and projects of the visualization
interfaces in the databases, supported by OpenSCADA; actually users need only to register the
database with data.

 2. Execution of the VCA interfaces
Execution of the VCA interface is to run a new project session or connect to the existing one on the level

of VCA engine (Fig.2). Before the connection request to the session the authentication of the user request is
done . Then the module of direct visualization represents and manages the data of the session. The main
window of the execution mode of this module has the form presented at Fig.3.

The interface of the execution window is fully dynamically built by the JavaScript script on the basis of
the contents of the session of the project through direct XML requests to the server.

Update of the contents of the open pages of the visualization interface with the frequency of 1 second. In
the updating process it is performed:

• request a list of opened pages, with a sign of page modification, at the model and consistency
checking of the actually opened pages to that list;
• request of the branch of the modified pages;
• update of the contents of the modified pages and their widgets, in accordance with the received
modified data.

The mechanism of the request of the only modified data is based on an absolute counter of the session
execution. If you want to make real changes in the attributes of widgets the memorizing of the value of this
counter is done, which allows the identification of modified attributes. This approach can increase
productivity and reduce the load on network sharing in the case of access to the VCA engine via network.

Hierarchically the module provides an opportunity to accommodate the project pages in the main
execution window of the WEB-browser (Fig.3), as well as putting them inside of the container widgets.

Fig.1.Authentication page.

The module <WebVision> of subsystems “User Interfaces” 559

Fig.2. Connection or the creation of a new session of the project's execution of the VCA.

Fig.3. The main execution window.

The module <WebVision> of subsystems “User Interfaces” 560

 3. Conception of basic elements (primitives)
In this version of that module not all the primitives' images of this project are implemented. In general

the project provides the following primitives:

Id Name Purpose

ElFigure
Elementary graphic
figures

Primitive is the basis for drawing basic graphic shapes with their
possible combinations in the single object. The support of the
following elementary figures is provided:

• Line.
• Arc.
• Bézier curve.
• Fill of the enclosed space.

For all figures contained in the widget common properties of
thickness, color, etc. are set, but this does not exclude the possibility
of indicating of a forenamed attributes specific to each figure
separately.

FormEl Form elements.

Includes support of standard form components:
• Line edit.
• Text edit.
• Check box.
• Button.
• Combo box.
• List.
• Slider.
• Scroll bar.

Text Text Text element(labels). It is characterized by the type of font, color,
orientation and alignment.

Media Media

Element of representation of raster and vector images of various
formats, playback of the animated images, playback of audio
segments and view of video segments. Perhaps it will be useful to
include the OpenGL support for it!

Diagram Diagram
Element of the diagram with the support of the possibility of
displaying multiple streams of trends and different modes of display,
from minimalist to full, two-, three-dimensional, circular, etc.

Protocol Protocol
Element of the protocol, visualizer of the system messages, with
support for multiple operating modes with the different sizes and
settings

Document Document The element of generating the reports, journals and other
documentation on the basis of specified data.

Function
Function of API of the
object model of
OpenSCADA

Not visual, on the side of execution, widget which allows to include a
computing function of the object model of OpenSCADA in the VCA.

Box Box
Contains the mechanism fro other widgets placement with the
purpose of creation of new, more complex widgets and pages of final
visualization.

Lets examine the implementation of each primitive.

The module <WebVision> of subsystems “User Interfaces” 561

 3.1. Elementary figure primitive (ElFigure)

Support of the elementary figures is provided: lines, elliptical arcs, Bézier curves and fill of the enclosed
space with the color and/or image. For the elementary figures the following operations are provided:

• creation/deleting of the figures;
• copying of the figure;
• moving and resizing of the figures by mouse and keyboard;
• possibility to connect the elementary figures to each other, getting more complex figures, for
which all the properties of the source elementary figures are available;
• possibility of simultaneous movement of several figures;
• fill of the enclosed space with the color and/or image;
• generation of mouse key events at the time of the mouse-click on the filled spaces;
• scaling;
• rotation.

Fig. 4 shows a part of the screen with a frame containing the elementary figures.

Fig.4 Realization of elementary figures in the WebVision.

The module <WebVision> of subsystems “User Interfaces” 562

 3.2. Text primitive (Text)

Support of the text element with the following properties is provided:
• Font with the properties: type/class of the font, size, bold, italic, strikeout and underline.
• Text color.
• Text orientation.
• Automatic word wrap.
• Alignment of the text horizontally and vertically with all options..
• Displaying the background as the color and/or image.
• Display the border around the text, with the specified color, width and style.
• Formation of the text from the attributes of different types and properties.

Fig. 5 represents a part of the screen with the frame containing the text examples using various
parameters.

Fig.5. Realization of the basic text element in the WebVision.

The module <WebVision> of subsystems “User Interfaces” 563

 3.3. Primitive of the form element (FormEl)

Support of the form elements on the VCA frames is provided. The following form elements are included:
Line edit — It is represented by the following types: "Text", "Combo", "Integer", "Real", "Time",

"Date", "Date and time". All kinds of line editor support the confirmation of entry.
Text edit — It is the flat-text editor with the confirmation or denial of entry.
Check box — Provides a field of binary flag.
Button — Provides the button with the support of: the color of the button, the image of the

button, and mode of fixation.
Combo box — Provides the selection field of the element from the list of the items.
List — Provides the list box with the control of the current element.
Slider — Slider element(Not done).
Scroll bar — Strip of the scroll bar(Not done).

The following modes are realized: «Enabled» and «Active», as well as transfer of changes and events to
the data model of the VCA (engine). For all realized representations the active mode is supported, ie
elements can be used to create the forms of user input.

Fig. 6 represents a part of the screen with the frame containing the above-listed elements of the form.

Fig.6. Realization of the form elements in the WebVision.

The module <WebVision> of subsystems “User Interfaces” 564

 3.4. Primitive of the displaying the media materials (Media)

Support of the element of the displaying of media materials with the following properties is provided:
• The indication of the source of media data (images or video material).
• View of the images of most well-known formats with the possibility of inscribing of it in the size
of the widget.
• Playback of the simple animated images and video formats with the possibility to control the
playback speed.
• Displaying of the the background as a color and/or image.
• Display the border around the text, with the specified color, width and style.
• Formation of the active areas and generating the events when they are activated.

Fig. 7 represents a part of the screen with the frame containing examples of viewing/playback of media
data.

Fig.7. Realization of the basic element of the displaying of media materials in the WebVision.

The module <WebVision> of subsystems “User Interfaces” 565

 3.5. Primitive of the construction of diagrams/graphs (Diagram)

Support of the element of the construction of diagrams/graphs with the following properties is provided:
• Construction of graphs/trends:

• Construction graph for: archive data, current data and the formation of an intermediate
buffer for the display of the parameters without archive.
• Construction of a single graphs with the value of the parameter on the ordinate axis, and
the combined graphs of up to 10 parameters, with the percentage scale.
• Ability to adapt the parameter's graph to the value, the regrowth of scale.
• Wide range of scalability and adaptation of the horizontal scale, with automatic averaging
at the server level and the primitive itself.
• Ability to display the size grid and markers on the horizontal and vertical, with adaptation
to the displaying range.
• Ability to set the cursor in the trend by mouse.

Fig. 8 represents a part of the screen with the frame containing examples of the trend-diagrams.

Fig.8. Realization of the basic element of a diagram-trend displaying in the WebVision.

 3.6. Primitive of the protocol formation (Protocol)

Support of the element of the formation of the protocol with the following properties is provided:
• Formation of the protocol from the archive of messages for the specified time and depth.
• Request of the data from the messages archivers.
• Selection of data from the archives by the level of importance and the category of messages
template.
• Support the tracking mode for the appearance of messages in the archive of messages.

Fig. 9 represents a part of the screen with the frame containing an example of the protocol.

Fig.9. Realization of the basic element of a protocol displaying in the WebVision.

The module <WebVision> of subsystems “User Interfaces” 566

 3.7. Primitive of the report formation(Document)

Support element of the report formation with the following properties is provided:
• Adaptive formation of a document structure based on Hypertext Markup Language. This provides
support for the broad features of formatting of the documents.
• Formation of the documents on command or on schedule. It is necessary for creation of reports
into the archive and then view the archive.
• Formation of a document in real time mode. It is necessary to form documents completely
dynamically, and based on the archives for the specified time.
• Using of the the attributes of the widget for transmission of values and addresses to the archives
in the report. It allows you to use the widget of the document as a template when generating reports
with other input data.

The basis of any document is XHTML-template. XHTML-template is the tag “body” of the WEB-page
which contains the document's static in the standard XHTML 1.0 and elements of the executable
instructions in one of the languages of the user programming of OpenSCADA in the form of <?dp
<procedure> ?>. The resulting document is formed by the execution of procedures and insert of their result
into the document.

The source for values of the executable instructions are the attributes of the widget of the primitive, as
well as all the mechanisms of the user programming language. Attributes may be added by the user and
they can be linked to the actual attributes or parameters or they can be autonomous, values of which will be
formed in the script of the widget. In the case of linked attributes the values can be extracted from the
history, archive.

The module <WebVision> of subsystems “User Interfaces” 567

Fig. 10 shows the frame containing a sample of the document.

Fig.10 Implementation of the basic visualization element of the report documentation in the WebVision.

 3.8. Primitive of the box container (Box)

Support of the primitive of the container concurrently serves as the project pages is provided. This
primitive is the only element-container, which may include links to frames from the library, thereby
creating the user elements of desired configuration. Primitive implements the provided by the project
properties. The properties of this primitive are:

Container — Allows you to form the desired objects by grouping in the limits of the primitive.
Page — Elements constructed on the basis of the primitive may serve as a page of user interface.
Container of pages — Property of substitution of its own contents by another page in the

execution process. Used to create frames on the pages of user interface. For example, the main page
of traditional SCADA system with alarm objects is constructed in this way.

Background — Supports ability to specify the background as color or image.
Border — Supports the displaying of the border, with the specified color, width and style.

The module <WebVision> of subsystems “User Interfaces” 568

 4. The overall configuration of the module
To adjust your own behavior in not obvious situations the module provides the ability to customize

individual settings through the management interface of the OpenSCADA (Fig. 11). These settings are:
• The lifetime of the authentication session.

Fig.11. The configuration page of the module.

Conclusion
At this stage, the module may be used to build a real user interfaces that support core functions.

However, some problems may arise due to the differences between browsers. For now it is guaranteed
stable work on browsers: FireFox, Konqueror, Opera and Google Chromium.

The module <WebVision> of subsystems “User Interfaces” 569

The module <WebUser> of subsystems "User
Interfaces"

Module: WebUser
Name: Web-interface from the user
Type: User Interfaces
Source: ui_WebUser.so
Version: 0.6.2
Author: Roman Savochenko
Translated: Maxim Lysenko

Description:
Allows you to create your own user web-interfaces in any language of
OpenSCADA.

License: GPL

WebUser module provides the user with a mechanism to create Web-pages, and can process other Web-
requests with the help of the internal language of OpenSCADA, usually JavaLikeCalc, without necessity of
low-level programming of OpenSCADA.

Except of the module's belonging to the system OpenSCADA it also belongs and is the module of the
<HTTP> transport protocol module. Actually, the WebUser call is made from Protocol.HTTP. The call is
made through enhanced communication mechanism through the exported to the WebUser module
functions: HttpGet() and HttpSet().

Addressing of the pages begins with the second element of the URI. It is connected with the fact that the
first element of the URI is used to identify the module of user Web-interface. For example URL:
http://localhost.localdomain:10002/WebUser/UserPage can be deciphered as a call of the user page
"UserPage" of the Web module WebUser on the host localhost.localdomain on port 10002. In the case of
absence of the second element of URI and instruction to display an index of user pages in the configuration
the index of the page is generated (Figure 1).

Fig.1. Index of user pages.

The module <WebUser> of subsystems "User Interfaces" 570

The main tab of the module configuration (Fig. 2) contains the state of the module, provides the ability
to select the default page and allows you to make the list of user pages.

Fig.2. Main tab of the module's configuration.

The module <WebUser> of subsystems "User Interfaces" 571

 1. WEB — pages
The module provides the ability to create multiple implementations of Web-pages in the object "User

page" (Fig. 3).

Fig.3. The main configuration page of the user page.

The main tab contains the basic settings of the user protocol:
• Section "Status" — contains properties that characterize the status of the user page:

• Enable — the page status "Enabled".
• DB — DB that stores configuration.

• Section "Config" — directly contains the configuration fields:
• ID — information on the page's identifier.
• Name — specifies the name of the page.
• Description — brief description of the page and its purpose.
• To enable — indicates the status "Enable", in which to transfer the page at startup.

The module <WebUser> of subsystems "User Interfaces" 572

All requests to the user pages are sent to the procedure of the processing of the requests of the user page,
which is represented on the "Program" tab of the user page object (Figure 4).

Fig.4. "Program" tab of the user page object.

Tab procedure's tab for processing the requests to the user's page contains the field for selecting the
internal programming language of OpenSCADA and the text entry field for the processing procedure
typing.

For the processing procedure the following exchange variables are predetermined:
• rez — Processing result (by defaults — "200 OK").
• HTTPreq — The HTTP request method (GET,POST).
• url — URI of the request.
• page — Contents of the Get/Post page for the request and respond as well.
• sender — Request sender.
• user — Authenticated user.
• HTTPvars — HTTP variables in the Object. Changed and appended variables (besides "Date",
"Server", "Accept-Ranges" and "Content-Length") will placed to respond packet.
• URLprms — URL parameters in the Object.
• cnts — Content items for POST in the Array<XMLNodeObj>.

The overall scenario of the user's page request:
• External network station generates an HTTP request with the following form of URI
"/WebUser/<UserPage>" which falls on transport of OpenSCADA with the value of the
configuration field "Protocol" equal to the "HTTP".
• Transport sends a request to the module of transport protocol Protocol.HTTP.
• Module of the transport protocol, in accordance with the first element of the URI, sends a request
to this module.
• This module selects the object of the user's page which is specified in the second element of the
URI.

The module <WebUser> of subsystems "User Interfaces" 573

• Initialization of the variables of HTTP-protocol for the procedure of the page is made:
• HTTPreq — the value of the string "GET" or "POST", depending on the type of request,
is set;
• url — address of the requested resource (URI);
• page — the content of sending page for method "POST";
• sender — address of the request sender;
• user — address of an authenticated user, if the authentication has occurred;
• HTTPvars — the parsed list of variables of the HTTP protocol in the form of object's
properties;
• URLprms — the parsed list of URL parameters in the form of object's properties;
• cnts — parsed contents items for POST in Array <XMLNodeObj>, with the contents of
elements in the text and properties in the attributes XMLNodeObj.

• Calling the procedure for execution, which, having processed the request, forms the contents of
the page in the "page" and the result of the request in the "rez".
• At the end the answer is formed with the return code of the HTTP from "rez" and with the
contents from the "page", and also changed and appended variables of HTTP protocol from
HTTPvars.

The module <WebUser> of subsystems "User Interfaces" 574

	Introduction
	Project targets
	Policy of development. License.
	Scopes
	Architecture

	Functional characteristics and demands of OpenSCADA system
	 1. The employment area of system OpenSCADA
	 1.1. SCADA system's server:
	 1.2. Station of the operator of technological process, the board of the dispatcher, the panel of monitoring, etc.:
	 1.3. The environment of execution of controllers (PLC):

	 2. Requirements for OpenSCADA
	 2.1. Execution
	 2.2. Building

	OpenSCADA program description
	 1. Functions of the system.
	 1.1. Modularity.
	 1.2. Subsystems.
	 1.3. PLC and other sources of dynamic data. A subsystem "Data acquisition".
	 1.4. Databases. A subsystem of "Database"
	 1.5. Archives. A subsystem "Archives".
	 1.6. Communications. Subsystems "Transports" and "Transport protocols".
	 1.7. Interfaces of the user. A subsystem "Interfaces of the user".
	 1.8. Security of system. A subsystem "Security".
	 1.9. Management of libraries of modules and modules. A subsystem "Management of modules".
	 1.10. Unforeseen opportunities. A subsystem "Special".
	 1.11. The user functions. Objective model and the environment of programming of system.

	 2. SCADA systems and their structure.
	 3. Ways of configuration and using of OpenSCADA system.
	 3.1. Simple server connection.
	 3.2. The duplicated server connection.
	 3.3. The duplicated server connection on one server.
	 3.4. Client access by means of the Web-interface. A place of the manager.
	 3.5. The automated workplace (place of the manager/operator).
	 3.6. Automated workplace with a server of acquisition and archiving on the single machine (a place of the operator, model...).
	 3.7. The elementary mixed connection (model, demonstration, configurator...).
	 3.8. The steady, allocated configuration.

	 4. Configuration and adjustment of the system.
	 4.1. "DB" subsystem
	 4.2. Subsystem "Security"
	 4.3. Subsystem "Transports"
	 4.4. Subsystem "Transport protocols"
	 4.5. Subsystem "Data acquisition"
	 4.6. Subsystem "Archives"
	 4.7. Subsystem "User interfaces"
	 4.8. Subsystem "Specials"
	 4.9. Subsystem "Modules scheduler"
	 4.10. Configuration file of the OpenSCADA and parameters of command-line OpenSCADA execution.

	 5. System-wide API of user programming.
	 5.1. System-wide user objects.
	Array object
	RegExp object
	XMLNodeObj object

	 5.2. System (SYS)
	 5.3. Any object (TCntrNode) of OpenSCADA objects tree (SYS.*)
	 5.4. "Security" subsystem (SYS.Security)
	 5.5. "DB" subsystem (SYS.BD)
	 5.6. Subsystem "DAQ" (SYS.DAQ)
	 5.6.1. The module DAQ.JavaLikeCalc
	 5.6.2. The module DAQ.ModBus

	 5.7. "Archives" subsystem (SYS.Archive)
	 5.8. "Transports" subsystem (SYS.Transport)
	 5.9. "User interfaces" subsystem (SYS.UI)
	 5.9.1. The module UI.VCAEngine

	 5.10. "Special" subsystem (SYS.Special)
	 5.10.1. Module Special.FLibSYS
	 5.10.2. Module Special.FLibMath
	 5.10.3. Module Special.FLibComplex1

	Data acquisition in OpenSCADA
	 1. Data acquisition methods
	 1.1. Simple synchronous acquisition mechanism
	 1.2. Simple asynchronous acquisition mechanism
	 1.3. Package acquisition mechanism
	 1.4. Passive acquisition mechanism

	 2. Virtual data sources
	 3. Logic level of data processing
	 4. Redundancy of the data sources

	Quick start OpenSCADA
	 1. Terms, definitions and abbreviations
	 2. Installation
	 2.1. Installing OpenSCADA from packages
	 2.2. Installation from sources

	 3. Initial configuration and start
	 3.1.Creation the user's project from scratch

	 4. Working with Data Sources
	 4.1. Data acquisition from the TP device
	 4.2. TP data processing
	 4.3. Typified Data Sources Parameters
	 4.4. Enabling the TP data archiving

	 5. The formation of visual presentation
	 5.1. Adding the template page in the project and linkage of the dynamics
	 5.2. The creation of the new frame, the mnemonic scheme
	 5.3. Creation of the new complex element
	 5.3.1. Creation the widget "Air cooler" on the basis of the primitive "Elementary figures".
	 5.3.2. Creation the final complex widget "Cooler" on the basis of the primitive "Elements box"
	 5.3.3. Adding the complex element to the mnemonic scheme

	 6. Recipes
	 6.1. Transfer of OpenSCADA configurations from one project to another
	Easy transfer of the DB with libraries and configuration
	Separation of the desired configuration
	Low-level copy of the DB contents

	 6.2. Cyclic programming into OpenSCADA particularity
	 6.3. Live disk (Live CD/USB)
	ISO-image of the live CD
	FAT-image of the live disk
	Booting

	 6.4. General provisions of the working conception with violations, alarms and notifications

	Conclusion

	Library of models of technological devices
	1 Conception
	2 The library structure
	Lag (lag) <1.2>
	Noise (2 harmonic + rand) (noise) <3.5>
	Ball crane (ballCrane) <1.4>
	Separator (separator) <14>
	Valve (klap) <19.5>
	Lag (clear) (lagClean) <2.9>
	Boiler: barrel (boilerBarrel) <30.5>
	Boiler: burner (boilerBurner) <50.5>
	Network (loading) (net) <13>
	Source (pressure) (src_press) <12>
	Air cooler (cooler) <16.5>
	Gas compressor (compressor) <12>
	Source (flow) (src_flow) <2.2>
	Pipe-base (pipeBase) <11.5>
	Pipe 1->1 (pipe1_1) <36.5>
	Pipe 2->1 (pipe2_1) <26>
	Pipe 3->1 (pipe3_1) <36>
	Pipe 1->2 (pipe1_2) <25.5>
	Pipe 1->3 (pipe1_3) <36.5>
	Pipe 1->4 (pipe1_4) <47.5>
	Valve proc. mechanism (klapMech) <3>
	Diaphragm (diafragma) <14>
	Heat exchanger (heatExch) <28.4>

	Main elements library of the user interface
	 1. Analog show (anShow)
	Using - Development
	Using - Runtime
	Linking attributes

	 2. Analog show 1 (anShow1)
	Using - Development
	Linking attributes

	 3. Element cadr (ElCadr)
	Using - Development
	Using - Runtime
	Linking attributes

	 4. Contours group (grpCadr)
	Using - Development
	Using - Runtime
	Linking attributes

	 5. Views page's element (ElViewCadr)
	Using - Development
	Using - Runtime
	Linking attributes

	 6. Overview frames panel (ViewCadr)
	Using - Development
	Using - Runtime
	Linking attributes

	 7. Graphics group element (ElViewGraph)
	Using - Development
	Using - Runtime
	Linking attributes

	 8. Graphics group (grpGraph)
	Using - Development
	Using - Runtime
	Linking attributes

	 9. Result graphic's element (ResultGraphEl)
	Using - Development
	Linking attributes

	 10. Result graphics (ResultGraph)
	Using - Development
	Using - Runtime
	Linking attributes

	 11. Regulator's control panel (cntrRegul)
	Using - Development
	Using - Runtime
	Linking attributes

	 12. Root page (SO) (RootPgSo)
	Using - Development
	Using - Runtime

	 13. Passport (cntrPasp)
	Using - Development
	Using - Runtime
	Linking attributes

	 14. Document panel (doc_panel)
	Using - Development
	Using - Runtime
	Linking attributes

	 15. Graphics group panel (grph_panel)
	Using - Development
	Using - Runtime
	Linking attributes

	 16. Terminator panel (terminator)
	Using - Development
	Using - Runtime

	 17. Prescription: editing (prescrEdit)
	Using - Development
	Using - Runtime
	Linking attributes

	 18. Prescription: runtime (prescrRun)
	Using - development
	Using - Runtime
	Linking parameters

	 19. Acception (accept)
	Using - development
	Using - Runtime
	Linking parameters

	 20. Graph's param select (graphSelPrm)
	Using - development
	Using - Runtime

	Mnemonic elements library of the user interface
	 1. Elements of the pipeline without a gradient fill
	 2. Elements of the pipeline with a volume filling
	 3. Elements, representing various technological devices
	 4. The remaining elements, which can hardly be referred to a particular group

	Library of the electrical elements of the user's interface mnemonic schemes
	 1. Dynamic items
	 2. Static elements

	Module of subsystem “Archives”<FSArch>
	 1. Message Archiver
	 1.1. File format of archive messages
	 1.2. Example of the archive of messages file

	 2. Values Archiver
	 2.1. File format of archive values

	 3. Efficiency

	Module of subsystem “Archives” <DBArch>
	 1. Message Archiver
	 2. Values Archiver
	 3. Informational table of the archival tables

	Module of the subsystem “DB” <DBF>
	 1. Operations over the database
	 2. Operations over the table
	 3. Operations over the contents of the table
	 4. Productivity of DB

	Module of the subsystem “DB” <MySQL>
	 1. Operations over the database
	 2. Operations over the table
	 3. Operations over the contents of the table
	 4. DB access
	 5. Productivity of DB

	Module of the subsystem “DB” <SQLite>
	 1. Operations over the database
	 2. Operations over the table
	 3. Operations over the contents of the table
	 4. Access rights
	 5. Productivity of DB

	Module of the subsystem “DB” <FireBird>
	 1. Operations over the database
	 2. Operations over the table
	 3. Operations over the contents of the table
	 4. DB access
	 5. Productivity of DB

	Module of the subsystem “DB” <PostgreSQL>
	 1. Operations over the database
	 2. Operations over the table
	 3. Operations over the contents of the table
	 4. Access rights
	 5. Productivity of DB

	The module of subsystem “Data acquisition” <DiamondBoards>
	 1. Data controller of Diamond boards
	 2. Parameters of the Diamond controller
	Links

	The module of subsystem “Data acquisition” <System>
	 1. The controller of data
	 2. Parameters

	The module of subsystem “Data acquisition” <BlockCalc>
	 1. The controller of the module
	 2.The block scheme of the controller
	 3. Parameters of the controller
	 4. Copying of the block schemes

	The module of subsystem “Data acquisition” <JavaLikeCalc>
	 1. Java-like language
	 1.1. Elements of language
	 1.2. Operations of language
	 1.3. Embedded functions of language
	 1.4. Operators of the language
	 1.4.1. Conditional operators
	 1.4.2. Loops
	 1.4.3. Special characters of string variables

	 1.5. Object
	 1.6. Examples of programs on the language

	 2. Controller and its configuration
	 3. The parameter of the controller and its configuration
	 4. Libraries of functions of module
	 5. User functions of the module
	 6. User programming API

	The module of subsystem “Data acquisition” <LogicLev>
	 1. Data controller
	 2. Parameters
	Logical type parameter (std)
	Parameter reflection (pRef)

	The module of subsystem “Data acquisition” <SNMP>
	 1. SNMP
	 1.1. MIB
	 1.2. Addressing
	 1.3. Interaction
	 1.4. Authorization

	 2. Module
	 2.1. Controller of data
	 2.2. Parameters

	TThe module of subsystem “Data acquisition” <Siemens>
	 1. Communication controllers CIF
	 2. The controller of the data source
	 3. The parameters of the data source
	 4. Asynchronous recording mode
	 5. Comments
	Links

	The modules <ModBus> of subsystem “Data acquisition” and subsystem “Transport protocols”
	 1. General description of the ModBus protocol
	 1.1. Addressing
	 1.2. Standard codes of functions

	 2. Module of the implementation of the protocol
	 2.1. API functions of outgoing requests
	 2.2. Servicing of the requests for ModBus protocol
	The mode of the node of the protocol “Data”
	The mode of the node of the protocol “Gateway of the node”
	The mode of the node of the protocol “Gateway of the network”

	 2.3 Report of the ModBus requests

	 3. Data acquisition module
	 3.1. Controller of data
	 3.2. Parameters
	Standard parameter type(std)
	Logical parameter type(logic)

	 3.3. User programming API

	The module of subsystem “Data acquisition”<DCON>
	 1. General description of the protocol DCON
	 2. Module
	 2.1. Data controller
	 2.2. Parameters

	 3. Compatibility table of input/output modules of different manufacturers

	The module of subsystem “Data acquisition” <ICP_DAS>
	 1. Data controller
	 2. Parameters
	 2.1 Module I-8017
	 2.2 Module I-8042
	 2.3 Module I-87019
	 2.4 Module I-87024
	 2.5 Module I-87057

	 3. LP-8x81 series controllers configuration
	Links

	The module of subsystem “Data acquisition” <DAQGate>
	 1. Controller of data
	 2. Parameters

	The module of subsystem “Data acquisition”<SoundCard>
	 1. Controller of the data
	 2. Parameters

	The <OPC_UA> module of “Data acquisition” and “Transport protocols” subsystems
	 1. OPC UA protocol
	 2. The module of the protocol implementation
	 2.1. Service the requests on the OPC UA protocol

	 3. Data acquisition module
	 3.1. Data controller
	 3.2. Parameters

	 4. Notes

	The <BFN> module of “Data acquisition” subsystem
	 1. Data controller
	 2. Parameters

	Module <Sockets> of subsystem “Transports”
	 1. Incoming transports
	 2. Outgoing transports

	Module <SSL> of subsystem “Transports”
	 1. Incoming transports
	 2. Outgoing transports
	 3. Certificates and keys

	Module <Serial> of subsystem “Transports”
	 1. Incoming transports
	 2. Outgoing transports
	 3. Remarks

	Module <HTTP> of subsystem “Protocols”
	 1. Authentication
	 2. The modules of user WEB-interface
	 3. Outgoing requests function's API

	Module <SelfSystem> of subsystem “Protocols”
	 1. The syntax of the protocol
	 2.The internal structure of an outgoing protocol

	Module <UserProtocol> of subsystem “Protocols”
	 1. Part of the protocol for incoming requests
	 2. Part of the protocol for outgoing requests

	The module <FLibComplex1> of the subsystem “Specials”
	 1. Alarm (alarm) <111>
	 2. Condition '<' (cond_lt) <239>
	 3. Condition '>' (cond_gt) <240>
	 4. Full condition (cond_full) <513>
	 5. Digital block (digitBlock) <252>
	 6. Division (div) <526>
	 7. Exponent (exp) <476>
	 8. Flow (flow) <235>
	 9. Iterator (increment) <181>
	 10. Lag (lag) <121>
	 11. Simple multiplication(mult) <259>
	 12. Multiplication + Division(multDiv) <468>
	 13. PID regulator (pid) <745>
	 14. Power (pow) <564>
	 15. Selection (select) <156>
	 16. Simple integrator (sum) <404>
	 17. Sum with the division (sum_div) <518>
	 18. Sum with the multiplication. (sum_mult) <483>
	 19. User programming API

	The module <FLibMath> of the subsystem “Specials” <FLibMath>
	 1. Functions
	 2. User programming API

	The module <FLibSYS> of the subsystem “Specials”
	 1. System-wide functions
	 1.1. Calling the console commands and operating system utilities (sysCall)
	 1.2. SQL query (dbReqSQL)
	 1.3. XML node (xmlNode)
	 1.4. Request of the management interface (xmlCntrReq)
	 1.5. Values archive (vArh)
	VArchObj object

	 1.6. Buffer of the values archive (vArhBuf)

	 2. Functions for the astronomical time processing
	 2.1. Time string (tmFStr) <3047>
	 2.2. Full Date (tmDate) <973>
	 2.3. Absolute time (tmTime) <220>
	 2.4. Conversion the time from the symbolic representation to the time in seconds from the epoch of 1/1/1970 (tmStrPTime) <2600>
	 2.5. Planning of the time in the Cron format (tmCron)

	 3. Functions of the messages processing
	 3.1. Messages request (messGet)
	 3.2. Generation of the message (messPut)

	 4. Functions of the strings processing
	 4.1. Getting the size of the string (strSize) <114>
	 4.2. Getting the part of the string (strSubstr) <413>
	 4.3. Insert of the on string to the another (strInsert) <1200>
	 4.4. Change the part of the string with the another one (strReplace) <531>
	 4.5. Parsing the string on separator (strParse) <537>
	 4.6. Path parsing (strParsePath) <300>
	 4.7. Path to the string with the separator (strPath2Sep)
	 4.8. Coding of the string to HTML (strEnc2HTML)
	 4.9. Encode text to bin (strEnc2Bin)
	 4.10. Decode text from bin (strDec4Bin)
	 4.11. Convert real to string (real2str)
	 4.12. Convert integer to string (int2str)
	 4.13. Convert the string to real (str2real)
	 4.14. Convert the to integer (str2int)

	 5. Functions for the real processing
	 5.1. Splitting the float to the words (floatSplitWord) <56>
	 5.2. Merging the float from words (floatMergeWord) <70>

	 6. User programming API

	The module <SystemTests> of the subsystem "Specials"
	 1. Parameter (Param)
	 2. XML parsing (XML)
	 3. Messages (Mess)
	 4. SO attaching (SOAttach)
	 5. Attribute of the parameter (Val)
	 6. DB test (DB)
	 7. Transport (TrOut)
	 8. Control system language (SysContrLang)
	 9. Values buffer (ValBuf)
	 10. Values archive (Archive)
	 11. Base64 code (Base64Code)

	The module of subsystems “User Interfaces” <QTStarter>
	The module <QTCfg> of subsystems “User Interfaces”
	 1. Configuration
	 2. Basic elements
	 3. Commands
	 4. Lists
	 5. Tables
	 6. Images

	The module <WebCfg> of subsystems “User Interfaces”
	 1. Basic elements
	 2. Commands
	 3. Lists
	 4. Tables
	 5. Images

	The module <WebCfgD> of subsystems “User Interfaces”
	 1. Configuration
	 2. Basic elements
	 3. Commands
	 4. Lists
	 5. Tables
	 6. Images
	 7. Errors

	The module <VCAEngine> of subsystems "User Interfaces"
	 1. Purpose
	 2. The configuration and the formation of interfaces of the VCA
	 3. Architecture
	 3.1. Frames and elements of visualization (widgets)
	 3.2. Project
	 3.3. Styles
	 3.4. Events, their processing and the events' maps
	 3.5. Signaling (Alarms)
	 3.6. Rights management
	 3.7. Linkage with the dynamics
	 3.8. The primitives of the widget
	 3.8.1. Elementary graphic figures (ElFigure)
	 3.8.2. Element of the form (FormEl)
	 3.8.3. Text element (Text)
	 3.8.4. Element of visualization of media materials (Media)
	 3.8.5. Element of constructing diagrams/trends (Diagram)
	 3.8.6. The element of building the protocols based on the archives of messages (Protocol)
	 3.8.7. Element of formation of documentation(Document)
	 3.8.8. Container (Box)

	 3.9. Using the database to store the library of widgets and projects
	 3.10 API of the user programming and service interfaces of the OpenSCADA
	 3.10.1. API of the user programming
	 3.10.2. Service interfaces of the OpenSCADA
	Access to the values of attributes of the visualization elements (widgets)
	Group access to the values of attributes of the visualization elements (widgets)
	Access to the pages of the session
	Signaling (alarm) management
	Manipulation with the sessions of the projects
	The group request of the tree of widget libraries

	 4. Configuring the module via the control interface of OpenSCADA

	The module <Vision> of subsystems "User Interfaces"
	 1. Purpose
	 2. Tool of the graphical formation of the VCA interface
	 2.1. Styles
	 2.2. Linkage with the dynamics

	 3. Execution of the VCA interfaces
	 4. Сonception of basic elements (primitives)
	 4.1. Elementary figure primitive (ElFigure)
	 4.2. Text primitive (Text)
	 4.3. Primitive of the form element (FormEl)
	 4.4. Primitive of the displaying the media materials (Media)
	 4.5. Primitive of the construction of diagrams/graphs (Diagram)
	 4.6. Primitive of the protocol formation (Protocol)
	 4.7. Primitive of the report formation (Document)
	 4.8. Primitive of the box container (Box)

	 5. Vector graphics editor.
	 5.1. Purpose
	 5.2. Principles and functions of the graphic editor
	 5.3. Basic principles of operation in the graphic editor
	 5.4. Popup menu of the graphic editor
	 5.5. Properties dialog of the elementary figure

	 6. The overall configuration of the module

	The module <WebVision> of subsystems “User Interfaces”
	 1. Purpose
	 2. Execution of the VCA interfaces
	 3. Conception of basic elements (primitives)
	 3.1. Elementary figure primitive (ElFigure)
	 3.2. Text primitive (Text)
	 3.3. Primitive of the form element (FormEl)
	 3.4. Primitive of the displaying the media materials (Media)
	 3.5. Primitive of the construction of diagrams/graphs (Diagram)
	 3.6. Primitive of the protocol formation (Protocol)
	 3.7. Primitive of the report formation(Document)
	 3.8. Primitive of the box container (Box)

	 4. The overall configuration of the module
	Conclusion

	The module <WebUser> of subsystems "User Interfaces"
	 1. WEB — pages

