OpenSCADA

Библиотеки/НизкоУровневыеУстройства

This page is a translated version of the page Libs/LowLevelDevices and the translation is 14% complete.

English • ‎mRussian • ‎Українська
Название Версия Лицензия Источник Языки Автор Описание
Библиотека низкоуровневых сенсоров и чипов 1.6 GPLv2 OscadaLibs.db (SQL, GZip) > DAQ.tmplb_LowDevLib en, uk, ru Роман Савоченко
  Аркадий Кысиль (2017)
Библиотека шаблонов предоставления доступа к данным устройств низкоуровневых шин.
- комбинировать 1W шаблоны в одном сложном и дополнить 1W работой непосредственно через GPIO.

Библиотека устройств пользовательских протоколов создана для предоставления доступа к данным устройств низкоуровневых шин, с протоколом достаточно простым для реализации в модуле пользовательского протокола или непосредственно на внутреннем языке подобном на Java.

Названия элементов и их параметров доступны на языках: Английский, Украинский и mRussian. Их исходный код написан в языко(человеческий)-независимом режиме с вызовом функции перевода tr() и перевод этих сообщений также доступен Английским, Украинским и mRussian.

Для подключения библиотеки к проекту станции OpenSCADA Вы можете получить файл БД как:

wget http://oscada.org/svn/trunk/OpenSCADA/data/LibsDB/OscadaLibs.sql
sqlite3 -init OscadaLibs.sql OscadaLibs.db .exit

Этот загруженный файл вы далее можете разместить в каталоге проекта станции и создать объект базы данных модуля БД "SQLite", зарегистрировав файл базы данных в конфигурации.

Contents

Для DAQ-шаблонов, в целом, вам нужно создать представительский объект устройства в модуле Логического Уровня и выбрать соответствующий шаблон из библиотеки шаблонов. Далее, для корректной конфигурации, придерживайтесь специфики шаблона в персональном описании. Концепцию доступа к данным через пользовательский протокол можно изобразить как на рисунке 1.

Рис.1. Концепция доступа к данным через пользовательский протокол.

Как можно видеть с рисунка 1, взаимодействие с устройством происходит через некоторый транспорт на котором они физически базируются. Запрос к транспорту Вы можете отправить:

  1. Непосредственно с помощью функции системного API OpenSCADA объекта транспорта string messIO( string mess, real timeOut = 0 );, если протоколоспецифическая часть очень проста и данные Вам нужно лишь извлечь.
  2. Завёрнутый запрос данных req, функцией int messIO( XMLNodeObj req, string prt ); и для протокола prt, если протокольная часть достаточно сложная и уже представлена в OpenSCADA.
  3. Завёрнутый запрос данных специфический к пользователю с помощью функции int messIO( XMLNodeObj req, "UserProtocol" ); и реализации пользовательского протокола, если протокольная часть достаточно сложная и ещё отсутствует в OpenSCADA. Пользователь реализует тут саму протоколоспецифическую часть в модуле UserProtocol и часть специфическую к данным в шаблоне для модуля Логического Уровня или непосредственно в процедуре контролера на внутреннем языке программирования модуля JavaLikeCalc.
At.png Этот последний метод развит к возможности формирования протокольной части кода непосредственно в том-же коде шаблона, как отдельная встроенная функция через вызовом функции запроса первого метода, если нет необходимости повторного использования, или даже если такая необходимость есть и тут имеет смысл создание комплексного шаблона, который сможет объединять роль и выходного протокола, через его подключение также к модулю пользовательского протокола. И оно будет полностью храниться в одной библиотеке шаблонов.

At.png Прямая работа с выходным транспортом функции string messIO( string mess, real timeOut = 0 ); не предусматривает блокирования транспорта поза вызовом этой функции, а соответственно, для сложных протоколов с посылками ответа более чем в одном пакете, что предусматривает процесс "дожидания", не можно использовать общий транспорт, по которому возможна отправка пакетов различных протоколов или даже один, но в различных задачах (объектах контроллеров). Соответственно, если есть необходимость использования совместного транспорта, то размещайте параметры опроса по протоколу в одном объекте контроллера (задаче) или используйте модуль пользовательского протокола, к которому это замечание не имеет отношения, поскольку он осуществляет такое блокирование на время вызова процедуры обработки, как и остальные модульные протоколы OpenSCADA. Для размещения реализации протокола тут вы должны выполнить и придерживаться приведенных требований:


1 BT: RDTech UM24C, UM25C and UM34C (RDTech)

1.1 GPLv2 * en,uk Roman Savochenko
Result and the operative setup.

RDTech UM24C/UM25C/UM34C BlueTooth interface template. At.png Tested only on UM24C now.

The RDTech (RuiDeng) UM24C, UM25C and UM34C are low-cost USB pass-through power measurement devices, and support a decent number of collection features, as well as full control via Bluetooth. This template implements most exposed commands and data collection available by the device's Bluetooth interface.
RDTech UM24C.jpg

This template in first time uses the new output transports connection function SYS.Transport.outAt() and the Bluetooth interface for the data acquisition.

Template IOs

Identifier Parameter Type Mode Attribute Configuration Value
transport Transport String Input Not attribute Constant Serial.RD:/dev/rfcomm0:9600||1000:40-20
dev Device to bind

Like to "98:D3:31:F8:52:29" for binding by "rfcomm bind {N} 98:D3:31:F8:52:29".

String Input Not attribute Constant
V Volts Real Input Read only Variable
A Amperes Real Input Read only Variable
W Watts Real Input Read only Variable
T Temperature, °С Integer Input Read only Variable
R Resistance, Om Real Input Read only Variable
rec Recording Boolean Input Read only Variable
recAh Record, Ah Real Input Read only Variable
recWh Record, Wh Real Input Read only Variable
recThr Record threshold, A [0...0.3] Real Input Full access Variable
recTm Record time, seconds Real Input Read only Variable
grps Groups Text Input Read only Variable
grpNext Group next Boolean Input Full access Variable
grpClear Group clear Boolean Input Full access Variable
chMode Charging Mode String Input Read only Variable
scr Screen, [0...6] Integer Input Read only Variable
scrNext Screen next Boolean Input Full access Variable
scrRot Screen rotate Boolean Input Full access Variable
scrTm Screen timeout, minutes [0...9] Integer Input Full access Variable
scrBright Screen brightness, [0...5] Integer Input Full access Variable
this Object Object Input Not attribute Variable
f_err Function error String Input Not attribute Variable 0
f_stop Function stop flag Boolean Input Not attribute Variable 0
f_start Function start flag Boolean Input Not attribute Variable 0
f_frq Frequency of calculation of the function, Hz Real Input Not attribute Variable 1000
Configuration.

Configuring and using

1. Connection the BlueTooth device:
bluetoothctl
#[bluetooth]# scan on
#  Discovery started
#  [NEW] Device 98:D3:31:F8:52:29 UM24C
#  [CHG] Device 98:D3:31:F8:52:29 RSSI: -60
#[bluetooth]# scan off
#[bluetooth]# pair 98:D3:31:F8:52:29
#  Attempting to pair with 98:D3:31:F8:52:29
#  [CHG] Device 98:D3:31:F8:52:29 Connected: yes
#  Request PIN code
#  [UM241m[agent] Enter PIN code: 1234
#  Pairing successful
#[bluetooth]# trust 98:D3:31:F8:52:29
#  [CHG] Device 98:D3:31:F8:52:29 Trusted: yes
#  Changing 98:D3:31:F8:52:29 trust succeeded
#[bluetooth]# exit

rfcomm bind 0 98:D3:31:F8:52:29   # 0 here for binding to /dev/rfcomm0
2. Create and start a logical controller object or use any presented one with the needed scheduling properties.
3. Create a logical parameter object and select this template for it, one for each the devices. Enable the parameter.
4. Into the tab "Template configuration" of the logical parameter object you need to set:
  • Transport — to the address of the automatically created transport with its parameters after ":", according to the function SYS.Transport.outAt() address format, where the device address corresponds to the command rfcomm bind 0 in item 1.
  • Device to bind — here you may set the Bluetooth address of the device as "98:D3:31:F8:52:29" to call the rfcomm bind {N} command when starting the template, where N is respectively taken from the address of the previous item.
At.png The rfcomm command is normally not available to be called by a non-privileged user, and if you want to call it by such a user, you must set a corresponding sign for it as chmod u+s /usr/bin/rfcomm from the super user.
5. RESULT: The logical parameter object will perform gather data of and trace to modify of the writable properties.


2 BT: ATORCH UC96 (UC96)

1.0 GPLv2 * en,uk Roman Savochenko
Result and the operative setup.

ATORCH UC96 BlueTooth interface template.

The ATORCH UC96 are low-cost USB pass-through power measurement device with many interfaces and supporting a decent number of collection features, as well as control via Bluetooth. This template implements only the clearing data command and data collection by the device's Bluetooth interface.
ATORCH UC96.jpg

The device sends data packages not at a request and just after establishing the connection, that is broadcasting with one second period. At.png The device may not to send the data packages at enable not in the first screen, so you need to switch the first screen for the data appearance. The data can be missed also after suspending the PC, so this template in the first time implements the data missing detection and reconnection.

Template IOs

Identifier Parameter Type Mode Attribute Configuration Value
transport Transport String Input Not attribute Constant Serial.UC96:/dev/rfcomm0:9600||1000:40-20
dev Device to bind

Like to "58:F4:04:33:D5:FD" for binding by "rfcomm bind {N} 58:F4:04:33:D5:FD".

String Input Not attribute Constant
noDataTm No data detection time, seconds Integer Input Not attribute Constant 60
V Volts Real Input Read only Variable
A Amperes Real Input Read only Variable
W Watts Real Input Read only Variable
R Resistance, Om Real Input Read only Variable
T Temperature, °С Integer Input Read only Variable
Ah Capacity, Ah Real Input Read only Variable
Wh Capacity, Wh Real Input Read only Variable
Tm Time, seconds Integer Input Read only Variable
clear Clear Boolean Input Full access Variable
this Object Object Input Not attribute Variable
f_err Function error String Input Not attribute Variable 0
f_stop Function stop flag Boolean Input Not attribute Variable 0
f_start Function start flag Boolean Input Not attribute Variable 0
f_frq Frequency of calculation of the function, Hz Real Input Not attribute Variable 1000
Configuration.

Configuring and using

1. Connection the BlueTooth device: performed in the standard way of pairing and trusting without PIN and to UC96_SPP
2. Create and start a logical controller object or use any presented one with the needed scheduling properties.
3. Create a logical parameter object and select this template for it, one for each the devices. Enable the parameter.
4. Into the tab "Template configuration" of the logical parameter object you need to set:
  • Transport — to the address of the automatically created transport with its parameters after ":", according to the function SYS.Transport.outAt() address format, where the device address corresponds to the command rfcomm bind 0.
  • Device to bind — here you may set the Bluetooth address of the device as "58:F4:04:33:D5:FD" to call the rfcomm bind {N} command when starting the template, where N is respectively taken from the address of the previous item.
At.png The rfcomm command is normally not available to be called by a non-privileged user, and if you want to call it by such a user, you must set a corresponding sign for it as chmod u+s /usr/bin/rfcomm from the super user.
  • No data detection time — here you may set the time of detection of the data missing.
5. RESULT: The logical parameter object will perform gather data of and trace to modify of the writable properties.


3 One Wire by DS9097 (1W_DS9097)

1.2 GPLv2 * en

4 One Wire by DS9097U (1W_DS9097U)

1.2 GPLv2 * en Roman Savochenko
Result and the operative setup.

One Wire sensors bus implementing by 1Wire-adapter {DS9097,DS9097U}. Supported direct and parasite powering for the temperature sensors.
Supported 1Wire-devices: DS1820, DS1820/DS18S20/DS1920 (not tested), DS1822 (not tested), DS2413, DS2408, DS2450, DS2438.
Ds9097.png

Template IOs

Identifier Parameter Type Mode Attribute Configuration Value
transport Transport of the One Wire bus, Serial String Input Not attribute Constant oneWire
tmResc Rescan period, s Real Input Not attribute Constant 60
power Power, for temperature Boolean Input Read only Variable
this Object Object Input Not attribute Variable
f_frq Function calculate frequency (Hz) Real Input Not attribute Variable 1000
f_start Function start flag Boolean Input Not attribute Variable 0
f_stop Function stop flag Boolean Input Not attribute Variable 0
f_err Function error String Input Not attribute Variable 0
Configuration.

Configuring and using

1. Create an output transport of the type "Serial" and set its Identifier like to "oneWire", one for each the One Wire bus.
2. Set proper address of the Serial device, only for the adapter's serial device like "/dev/ttyS{N}". The serial port speed, asynchronous data format and timeouts will adjust by the template.
3. Create and start a logical controller object or use any presented one with the needed scheduling properties.
4. Create a logical parameter object and select the template for that, one for each the devices. Enable the parameter.
5. Into the tab "Template configuration" of the logical parameter object you need to set:
  • Transport of the One Wire bus, Serial — to the address of the transport into step 1. Tracing for the address changing is supported.
  • Rescan period, s — periodicity of rescaning for new and removed devices search.
6. RESULT: The logical parameter object will perform at first searching to 1Wire devices on the bus and create included parameters to the each found one. Next the logical parameter object will perform gather data of the found devices and trace to modify of the writable device's properties.


5 I2C: PCF8591 (PCF8591)

1.0 GPLv2 * en Roman Savochenko

I2C 8-bit 4xA/D and D/A converter. Connects through a Serial output transport into the I2C mode.

Template IOs

Identifier Parameter Type Mode Attribute Configuration Value
transport Transport of the I2C, Serial String Input Not attribute Constant i2c
addr Device address [0...119] Integer Input Not attribute Constant 72
vRef Reference voltage, V Real Input Not attribute Constant 3.2
ai0 AI0 Real Input Read only Variable
ai1 AI1 Real Input Read only Variable
ai2 AI2 Real Input Read only Variable
ai3 AI3 Real Input Read only Variable
ao AO Real Input Full access Variable
f_frq Function calculate frequency (Hz) Real Input Not attribute Variable 1000
f_start Function start flag Boolean Input Not attribute Variable 0
f_stop Function stop flag Boolean Input Not attribute Variable 0
f_err Function error String Input Not attribute Variable 0

Configuring and using

1. Create an output transport of the type "Serial" and set its Identifier like to "i2c", one for each the I2C bus.
2. Set proper address of the Serial device, only the I2C bus address like "/dev/i2c-{N}". Set the symbol's time into the timeouts field to the minimum value.
3. Create and start a logical controller object or use any presented one with the needed scheduling properties.
4. Create a logical parameter object and select the template for that, one for each I2C slave devices. Enable the parameter.
5. Into the tab "Template configuration" of the logical parameter object you need to set:
  • transport — to the address of the transport into step 1. Tracing for the address changing is supported.
  • addr — the I2C slave device's address [0...119].
  • vRef — reference voltage of the AIs and AO.
6. RESULT: The logical parameter object will perform interaction and placing of gathered data to the AI attributes and also will take the AO and write to the chip.


6 I2C: PCF8574 (PCF8574)

1.0 GPLv2 * en Roman Savochenko

I2C 8-bit 8DIO. Connects through a Serial output transport into the I2C mode.

Template IOs

Identifier Parameter Type Mode Attribute Configuration Value
transport Transport I2C String Input Not attribute Constant i2c
addr Device address (0, 119) Integer Input Not attribute Constant 39
di0 DI0 Boolean Input Read only Variable
di1 DI1 Boolean Input Read only Variable
di2 DI2 Boolean Input Read only Variable
di3 DI3 Boolean Input Read only Variable
di4 DI4 Boolean Input Read only Variable
di5 DI5 Boolean Input Read only Variable
di6 DI6 Boolean Input Read only Variable
di7 DI7 Boolean Input Read only Variable
do0 DO0 Boolean Output Full access Variable
do1 DO1 Boolean Output Full access Variable
do2 DO2 Boolean Output Full access Variable
do3 DO3 Boolean Output Full access Variable
do4 DO4 Boolean Output Full access Variable
do5 DO5 Boolean Output Full access Variable
do6 DO6 Boolean Output Full access Variable
do7 DO7 Boolean Output Full access Variable
f_frq Function calculate frequency (Hz) Real Input Not attribute Variable 1000
f_start Function start flag Boolean Input Not attribute Variable 0
f_stop Function stop flag Boolean Input Not attribute Variable 0
f_err Function error String Input Not attribute Variable 0

Configuring and using

1. Create an output transport of the type "Serial" and set its Identifier like to "i2c", one for each the I2C bus.
2. Set proper address of the Serial device, only the I2C bus address like "/dev/i2c-{N}". Set the symbol's time into the timeouts field to the minimum value.
3. Create and start a logical controller object or use any presented one with the needed scheduling properties.
4. Create a logical parameter object and select the template for that, one for each I2C slave devices. Enable the parameter.
5. Into the tab "Template configuration" of the logical parameter object you need to set:
  • transport — to the address of the transport into step 1. Tracing for the address changing is supported.
  • addr — the I2C slave device's address [0...119].
6. RESULT: The logical parameter object will perform interaction and placing of gathered data to the DI attributes and also will take the DO and write to the chip.


7 I2C: ADS101x, ADS111x (ADS111x)

1.0 GPLv2 * en Roman Savochenko

I2C 12/16-bit 4xA/D converter. Connect through a Serial output transport into the I2C mode.

Template IOs

Identifier Parameter Type Mode Attribute Configuration Value
transport Transport of the I2C, Serial String Input Not attribute Constant i2c
addr Device address [0...119] Integer Input Not attribute Constant 72
range Range, ±V Integer numbers selection Input Full access Variable 2

0;1;2;3;4;5
6.144;4.096;2.048;1.024;0.512;0.256

ai0 AI0 Real Input Read only Variable
ai1 AI1 Real Input Read only Variable
ai2 AI2 Real Input Read only Variable
ai3 AI3 Real Input Read only Variable
f_frq Function calculate frequency (Hz) Real Input Not attribute Variable 1000
f_start Function start flag Boolean Input Not attribute Variable 0
f_stop Function stop flag Boolean Input Not attribute Variable 0
f_err Function error String Input Not attribute Variable 0

Configuring and using

1. Create an output transport of the type "Serial" and set its Identifier like to "i2c", one for each the I2C bus.
2. Set proper address of the Serial device, only the I2C bus address like "/dev/i2c-{N}". Set the symbol's time into the timeouts field to the minimum value.
3. Create and start a logical controller object or use any presented one with the needed scheduling properties.
4. Create a logical parameter object and select the template for that, one for each I2C slave devices. Enable the parameter.
5. Into the tab "Template configuration" of the logical parameter object you need to set:
  • transport — to the address of the transport into step 1. Tracing for the address changing is supported.
  • addr — the I2C slave device's address [0...119].
  • range — range of voltage of the AIs.
6. RESULT: The logical parameter object will perform interaction and placing of gathered data to the AI attributes.


8 I2C: MCP4725 (MCP4725)

1.0 GPLv2 * en Roman Savochenko

I2C 12-bit D/A converter. Connect through a Serial output transport into the I2C mode.

Template IOs

Identifier Parameter Type Mode Attribute Configuration Value
transport Transport of the I2C, Serial String Input Not attribute Constant i2c
addr Device address [0...119] Integer Input Not attribute Constant 96
vRef Reference voltage, V Real Input Not attribute Constant 3.2
ao AO Real Input Full access Variable
f_frq Function calculate frequency (Hz) Real Input Not attribute Variable 1000
f_start Function start flag Boolean Input Not attribute Variable 0
f_stop Function stop flag Boolean Input Not attribute Variable 0
f_err Function error String Input Not attribute Variable 0

Configuring and using

1. Create an output transport of the type "Serial" and set its Identifier like to "i2c", one for each the I2C bus.
2. Set proper address of the Serial device, only the I2C bus address like "/dev/i2c-{N}". Set the symbol's time into the timeouts field to the minimum value.
3. Create and start a logical controller object or use any presented one with the needed scheduling properties.
4. Create a logical parameter object and select the template for that, one for each I2C slave devices. Enable the parameter.
5. Into the tab "Template configuration" of the logical parameter object you need to set:
  • transport — to the address of the transport into step 1. Tracing for the address changing is supported.
  • addr — the I2C slave device's address [0...119].
  • vRef — reference voltage of the AO.
6. RESULT: The logical parameter object will perform interaction and take the AO and write to the chip.


9 I2C: BMP180 (BMP180)

1.0 GPLv2 * en Roman Savochenko

I2C Pressure and Temperature sensor. Connecting through a Serial output transport into the I2C mode.

Template IOs

Identifier Parameter Type Mode Attribute Configuration Value
transport Transport of the I2C, Serial String Input Not attribute Constant i2c
addr Device address [0...119] Integer Input Not attribute Constant 119
oss Oversampling setting (0...3) Integer Input Not attribute Constant 0
t T, °С Real Input Read only Variable
p P, Pa Real Input Read only Variable
f_frq Function calculate frequency (Hz) Real Input Not attribute Variable 1000
f_start Function start flag Boolean Input Not attribute Variable 0
f_stop Function stop flag Boolean Input Not attribute Variable 0
f_err Function error String Input Not attribute Variable 0

Configuring and using

1. Create an output transport of the type "Serial" and set its Identifier like to "i2c", one for each the I2C bus.
2. Set proper address of the Serial device, only the I2C bus address like "/dev/i2c-{N}". Set the symbol's time into the timeouts field to the minimum value.
3. Create and start a logical controller object or use any presented one with the needed scheduling properties.
4. Create a logical parameter object and select the template for that, one for each I2C slave devices. Enable the parameter.
5. Into the tab "Template configuration" of the logical parameter object you need to set:
  • transport — to the address of the transport into step 1. Tracing for the address changing is supported.
  • addr — the I2C slave device's address [0...119].
  • oss — oversampling setting of pressure measurement [0...3].
6. RESULT: The logical parameter object will perform interaction and placing of gathered data to the Pressure and Temperature attributes.


10 I2C: BME280 (BME280)

1.0 GPLv2 * en Arcadiy Kisel, Roman Savochenko

I2C Barometric Pressure, Temperature and Humidity sensor. Connect through a Serial output transport into the I2C mode.

Template IOs

Identifier Parameter Type Mode Attribute Configuration Value
transport Transport of the I2C, Serial String Input Not attribute Constant i2c
addr Device address [0...119] Integer Input Not attribute Constant 118
oss Oversampling setting (0...7) Integer Input Not attribute Constant 0
t T, °С Real Input Read only Variable
p P, Pa Real Input Read only Variable
h H, % Real Input Read only Variable
f_frq Function calculate frequency (Hz) Real Input Not attribute Variable 1000
f_start Function start flag Boolean Input Not attribute Variable 0
f_stop Function stop flag Boolean Input Not attribute Variable 0
f_err Function error String Input Not attribute Variable 0

Configuring and using

1. Create an output transport of the type "Serial" and set its Identifier like to "i2c", one for each the I2C bus.
2. Set proper address of the Serial device, only the I2C bus address like "/dev/i2c-{N}". Set the symbol's time into the timeouts field to the minimum value.
3. Create and start a logical controller object or use any presented one with the needed scheduling properties.
4. Create a logical parameter object and select the template for that, one for each I2C slave devices. Enable the parameter.
5. Into the tab "Template configuration" of the logical parameter object you need to set:
  • transport — to the address of the transport into step 1. Tracing for the address changing is supported.
  • addr — the I2C slave device's address [0...119].
  • oss — oversampling setting of pressure measurement [0...7].
6. RESULT: The logical parameter object will perform interaction and placing of gathered data to the Pressure, Temperature and Humidity attributes.


11 I2C: SHT3x (SHT3x)

1.0 GPLv2 * en Roman Savochenko

Digital Temperature and Humidity Sensor for the models: SHT30

Template IOs

Identifier Parameter Type Mode Attribute Configuration Value
transport Transport of the I2C, Serial String Input Not attribute Constant i2c
addr Device address [0...119] Integer Input Not attribute Constant 68
H Humidity Real Input Read only Variable
T Temperature Real Input Read only Variable
f_frq Function calculate frequency (Hz) Real Input Not attribute Variable 1000
f_start Function start flag Boolean Input Not attribute Variable 0
f_stop Function stop flag Boolean Input Not attribute Variable 0
f_err Function error String Input Not attribute Variable 0

Configuring and using

1. Create an output transport of the type "Serial" and set its Identifier like to "i2c", one for each the I2C bus.
2. Set proper address of the Serial device, only the I2C bus address like "/dev/i2c-{N}". Set the symbol's time into the timeouts field to the minimum value.
3. Create and start a logical controller object or use any presented one with the needed scheduling properties.
4. Create a logical parameter object and select the template for that, one for each I2C slave devices. Enable the parameter.
5. Into the tab "Template configuration" of the logical parameter object you need to set:
  • transport — to the address of the transport into step 1. Tracing for the address changing is supported;
  • addr — the I2C slave device's address [0...119].
6. RESULT: The logical parameter object will perform interaction and placing of gathered data to the Temperature and Humidity attributes.


12 I2C: DS1307,DS3231 (DS3231)

1.1 GPLv2 * en Roman Savochenko

I2C RTC chips DS1307,DS3231 with Temperature sensor and calibration for DS3231. Connects through a Serial output transport into the I2C mode.

Template IOs

Identifier Parameter Type Mode Attribute Configuration Value
transport Transport of the I2C, Serial String Input Not attribute Constant i2c
addr Device address [0...119] Integer Input Not attribute Constant 119
mode Mode Integer numbers selection Input Full access Variable 0

0;1
DS3231;DS1307

tm Date and time, YYYY-MM-DDTHH:mm:SS String Input Full access Variable
pSQW Enable SQUARE-WAVE OUTPUT Boolean Input Full access Variable
pSQWf
(dynamically updated)
SQUARE-WAVE OUTPUT frequency Integer Input Full access Variable
agOff
(dynamically created for DS3231)
Aging offset, [-128...127] Integer Input Full access Variable
t
(dynamically created for DS3231)
T, °С Real Input Read only Variable
p32k
(dynamically created for DS3231)
Enable 32768Hz Boolean Input Full access Variable
f_frq Function calculate frequency (Hz) Real Input Not attribute Variable 1000
f_start Function start flag Boolean Input Not attribute Variable 0
f_stop Function stop flag Boolean Input Not attribute Variable 0
f_err Function error String Input Not attribute Variable 0

Configuring and using

1. Create an output transport of the type "Serial" and set its Identifier like to "i2c", one for each the I2C bus.
2. Set proper address of the Serial device, only the I2C bus address like "/dev/i2c-{N}". Set the symbol's time into the timeouts field to the minimum value.
3. Create and start a logical controller object or use any presented one with the needed scheduling properties.
4. Create a logical parameter object and select the template for that, one for each I2C slave devices. Enable the parameter.
5. Into the tab "Template configuration" of the logical parameter object you need to set:
  • transport — to the address of the transport into step 1. Tracing for the address changing is supported.
  • addr — the I2C slave device's address [0...119].
6. RESULT: The logical parameter object will perform interaction and placing of gathered data to the DateTime, Temperature and some one state attributes and also will take the DateTime, some one state attributes and write it to the chip.


13 I2C: AT24C{32|64} (AT24CXX)

1.0 GPLv2 * en Roman Savochenko

Provides operations with EEPROM memory based on I2C chips AT24C32 (4KB) and AT24C64 (8KB). Supported random reading and writing.

Output user protocol's XML request structure
<{cmd} addr="{ChipAddr}" off="{MemOffset}" size="{ReadSize}" err="1:Error">{ReadWriteSeq}</{cmd}>

cmd — command, for now there allowed: "read", "write";
addr — I2C device address [0...119];
off — memory part offset;
size — read memory block size.
ReadWriteSeq — Read/Write bytes sequence.
err — sets to result of the request.

Configuring and using

1. Create an output transport of the type "Serial" and set its Identifier like to "i2c", one for each the I2C bus.
2. Set proper address of the Serial device, only the I2C bus address like "/dev/i2c-{N}". Set the symbol's time into the timeouts field to the minimum value.
3. Place some requesting commands directly into presented or a new internal OpenSCADA procedure like to:
req = SYS.XMLNode("read"); req.setAttr("ProtIt","AT24CXX").setAttr("addr",87).setAttr("off",1000).setAttr("size",20).setText("My message");
req = SYS.XMLNode("write"); req.setAttr("ProtIt","AT24CXX").setAttr("addr",87).setAttr("off",1000).setText("Stored data");
4. RESULT: Into text() for "read" you will get the read data if no errors occur.


14 GPIO: DHT11,22 (DHT)

1.0 GPLv2 * en Roman Savochenko

Digital Temperature and Humidity Sensor for models: DHT11, DHT12, AM2302, AM2320, ... . The module designed for the sensors connect through GPIO, mostly it's Raspberry PI BCM2835 GPIO.
Conditions: Exclusively realtime planing in the priority 199 (FIFO-99).

Template IOs

Identifier Parameter Type Mode Attribute Configuration Value
addr GPIO address with functions mode(), get() and put(), mostly it's BCM2835 String Input Not attribute Constant DAQ.GPIO.io.pi
pin IO pin number of the GPIO Integer Input Not attribute Constant 17
tries Tries [1...5] Integer Input Not attribute Constant 2
dev Device (0-DHT11, 1-DHT22) Integer Input Not attribute Constant 1
t T, °С Real Input Read only Variable
h H, % Real Input Read only Variable
f_frq Function calculate frequency (Hz) Real Input Not attribute Variable 1000
f_start Function start flag Boolean Input Not attribute Variable 0
f_stop Function stop flag Boolean Input Not attribute Variable 0
f_err Function error String Input Not attribute Variable 0

Configuring and using

1. Create an output controller object and a parameter into the DAQ module "BCM 2835", by default it's "pi.pi".
2. Create and start a logical controller object or use any presented one with the needed scheduling properties (FIFO-199).
3. Create a logical parameter and select the template for that, one for each sensor. Enable the parameter.
4. Into the tab "Template configuration" of the logical parameter object you need to set:
  • addr — to the address of the "BCM 2835" parameter like "DAQ.GPIO.io.pi"; tracing for the address changing is supported;
  • pin — GPIO pin number where connected the data pin of the sensor;
  • tries — tries of the sensor reading;
  • dev — generic device specific selection.
5. RESULT: The logical parameter will perform interaction and placing of the gathered data to the Temperature and Humidity attributes.


15 GPIO: MAX6675 (MAX6675)

0.1 GPLv2 * en Arcadiy Kisel

Cold-Junction-Compensated K-Thermocouple-to-Digital Converter (0°C to +1024°C). The module designed for the sensors connect through softSPI by GPIO, mostly it's Raspberry PI BCM2835 GPIO.
Conditions: Exclusively realtime planing in the priority 199 (FIFO-99).

Template IOs

Identifier Parameter Type Mode Attribute Configuration Value
addr GPIO address with functions mode(), get() and put(), mostly it's BCM2835 String Input Not attribute Constant DAQ.GPIO.io.pi
pin_cs CS pin number of the GPIO Integer Input Not attribute Constant 8
pin_sclk SCLK pin number of the GPIO Integer Input Not attribute Constant 11
pin_miso MISO pin number of the GPIO Integer Input Not attribute Constant 9
t T, °С Real Output Read only Variable
f_frq Function calculate frequency (Hz) Real Input Not attribute Variable 1000
f_start Function start flag Boolean Input Not attribute Variable 0
f_stop Function stop flag Boolean Input Not attribute Variable 0
f_err Function error String Input Not attribute Variable 0

Configuring and using

1. Create an output controller object and a parameter into the DAQ module "BCM 2835", by default it's "pi.pi".
2. Create and start a logical controller object or use any presented one with the needed scheduling properties (FIFO-199).
3. Create a logical parameter and select the template for that, one for each sensor. Enable the parameter.
4. Into the tab "Template configuration" of the logical parameter object you need to set:
  • addr — to the address of the "BCM 2835" parameter like "DAQ.GPIO.io.pi"; tracing for the address changing is supported;
  • pin_cs — CS pin number where connected the chip selection pin of the sensor;
  • pin_sclk — SCLK pin number where connected the serial clock pin of the sensor;
  • pin_miso — MISO pin number where connected the master in slave out (data) pin of the sensor.
5. RESULT: The logical parameter will perform interaction and placing of the gathered data to the Temperature attributes.


16 GPIO|I2C: 1602A(HD44780) (1602A)

1.0 GPLv2 * en Roman Savochenko

LCD Module 1602A, STN, BLUB, 16 Character x 2 Line, 5 x 8 Dots, by the direct (Raspberry PI BCM2835 GPIO) or I2C (PCF8574) wiring.
Conditions: Default planing policy but realtime one preferred.

Template IOs

Identifier Parameter Type Mode Attribute Configuration Value
transport Transport of the I2C, Serial (i2c) or

GPIO address with function put(), mostly it's BCM2835 (DAQ.GPIO.io.pi)

String Input Not attribute Constant i2c
addr I2C device address [0...119] Integer Input Not attribute Constant 39
RS GPIO Pin: Reset Integer Input Not attribute Constant 7
E GPIO Pin: Enable Integer Input Not attribute Constant 8
D4 GPIO Pin: Data4 Integer Input Not attribute Constant 25
D5 GPIO Pin: Data5 Integer Input Not attribute Constant 24
D6 GPIO Pin: Data6 Integer Input Not attribute Constant 23
D7 GPIO Pin: Data7 Integer Input Not attribute Constant 18
ln1 Line 1 String Input Full access Variable
ln2 Line 2 String Input Full access Variable
f_frq Function calculate frequency (Hz) Real Input Not attribute Variable 1000
f_start Function start flag Boolean Input Not attribute Variable 0
f_stop Function stop flag Boolean Input Not attribute Variable 0
f_err Function error String Input Not attribute Variable 0

Configuring and using

1. Create an output controller and an object of parameter in DAQ module "BCM 2835", by default it's "pi.pi" or create an output transport of the type "Serial", set address like to "i2c", one for each the I2C bus.
2. Create and start a logical controller object or use any presented one with the needed scheduling properties.
3. Create a logical parameter object and select the template for that, one for each sensor. Enable the parameter.
4. Into the tab "Template configuration" of the logical parameter object you need to set:
  • transport — to address of the "BCM 2835" parameter like to "DAQ.GPIO.io.pi" or to address of the transport into step 1; tracing for the address changing is supported;
  • addr — the I2C slave device's address [0...119];
  • RS, E, D4, D5, D6, D7 — numbers of the GPIO pins where connected the proper data ones of the sensor.
5. RESULT: The logical parameter object will perform interaction and setting lines' values to the display.
Libs/LowLevelDevices/ru - GFDLMarch 2024OpenSCADA 0.9.7